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1. Introduction

Numerous results deal with the smoothness properties of convex continuous
functions or, more generally, of locally Lipschitz functions on Banach spaces.
A theorem of Mazur says that every convex continuous function on a separable
Banach space is Gateaux differentiable on a dense Gs-set. If we confine ourselves
to Banach spaces with a separable dual, any convex continuous function is even
Fréchet differentiable on a dense Gs-set.

A natural question is whether the set of points of differentiability has to be large
also in a sense of measure. In a finite dimension, the answer is positive; a classical
theorem of Rademacher says that any locally Lipschitz function on R is Fréchet
differentiable almost everywhere. In infinite-dimensional Banach spaces, there
is no measure analogous to the Lebesgue measure on R", and also no canonical
notion of a null set analogous to the family of sets of Lebesgue measure zero in
R™. One possible notion of a null set in infinite-dimensional Banach spaces was
defined by Aronszajn [Aro76]. He proved that every locally Lipschitz function on
a separable Banach space is Gateaux differentiable everywhere except for such a
null set. However, this is not the case for the Fréchet differentiability. Preiss and
Tiger [PT95] even showed that on every separable infinite-dimensional Banach
space, a Lipschitz function f exists such that the set of points where f is Fréchet
differentiable is Aronszajn null.

In this paper, we establish an analogous result for convex continuous functions
on the separable Hilbert space £2. In fact, we prove that there is an equivalent
norm p on ¢ such that the set of points where p is Fréchet differentiable is
Aronszajn null (Aronszajn null sets are defined in Section 2). To do so, we
modify a method of Preiss and Zajitek [PZ84] and combine it with a result on
finite-dimensional coverings by unit balls inspired by a ball covering construction
of Rogers [Rog57].

Having read a preliminary version of this manuscript and employing some of its
ideas, David Preiss came up with a much simpler proof. His main new insight is
that instead of proving the relatively complicated finite-dimensional ball covering
result, one can do a simple inductive construction directly in the Hilbert space.
In the interest of the readers and with Preiss’ permission, we reproduce his proof
in an appendix. The original proof is included as well, since we find the finite-
dimensional problem of some independent interest and since the techniques could
perhaps be useful in other situations.

Borwein and Noll conjecture in [BN94] that the set of points where a convex
continuous function on £3 is Lipschitz smooth is never Aronszajn null. Our
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result shows that this is not the case, since Lipschitz smoothness implies Fréchet
differentiability.

2. Notation and preliminaries

Let X be a Banach space. We let Bx (z, r) denote the closed ball in X with center
z and radius r; the subscript X will be often omitted where clear from the context.
For a set C' C X, we write B(C,r) =, B(z,7) for the r-neighborhood of C.
Let X be a Banach space and let f: X — R be a function. A continuous linear
map f'(z): X — R is a Gateaux derivative of f at a point z € X if
) _ f(z+1th) - f(z)
7/(2)(h) = lim DD
for every h € X. If, moreover, the above limit is uniform for ||h)| < 1, then f'(z)
is the Fréchet derivative of f at z.

NEGLIGIBLE SETS. There is no nontrivial translation-invariant Borel measure in
infinite-dimensional Banach spaces. Several authors have defined various classes
of “null sets” in infinite-dimensional Banach spaces, trying to mimic the basic
properties of Lebesgue null sets in R® (a countable union of null sets is null; a
translate and a subset of a null set is null; no nonempty open set is null; each
class restricted to R™ gives the null sets for the n-dimensional Lebesgue measure).
Such classes of null sets are not necessarily induced by a single measure on the
considered space.
The following notion of a null set was introduced by Aronszajn [Aro76].

Definition 2.1: Let X be a separable Banach space and let A be a subset of X.
The set A is called Aronszajn null if for every sequence (x;)2; in X whose
closed linear span is X there exist Borel sets A; C X such that A C | Jo, A; and
the intersection of A; with any line in the direction z; has the one-dimensional
Lebesgue measure zero, for each ¢ € N.

As an easy consequence of Fubini’s theorem, the following can be shown (see
[Aro76], Proposition 1): If n € N and A is a Borel subset of X such that the
intersection of A with any n-dimensional affine subspace of X is of n-dimensional
measure zero, then A is Aronszajn null. We will also need the following straight-
forward modification.

LEMMA 2.2: Let X be a separable Banach space, let A C X be a Borel set,
and let Y be a closed subspace of X of a finite codimension. Let n € N be such
that the intersection of A with any n-dimensional affine subspace of X parallel
to Y is of n-dimensional measure zero. Then A is Aronszajn null.
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Proof: Let k € N be the codimension of Y. Let Z be an (n + k)-dimensional
subspace of X. Then Z = Z; @ Z,, where Z; is an n-dimensional subspace of
Y and Z; is a subspace of X. Let z € X be given. All n-dimensional slices of
AN (Z + z) parallel to Z; are of n-dimensional Lebesgue measure zero, hence
AN(Z +z) is of (n + k)-dimensional Lebesgue measure zero by Fubini’s theorem.
The set A is Aronszajn null by the remark above the Lemma. |

HILBERT SPACE. Let £, denote the separable Hilbert space and let (e, eq,...)
be its orthonormal basis. We identify the Euclidean space R™ with the linear

span of {ej,ea,...,en} in £3. For a point z in R™ or in &3, ||z| = (3, :1:?)1/2
denotes the Euclidean norm. For a point z = (1,23, 23,...) = Y. Zi€;, we will
write z[p..ql = 3.!_ xie;, and zfp.. ] = 3.0 zies

GEOMETRIC CONSIDERATIONS. Let V,(r) denote the volume of the n-
dimensional ball of radius r. A well-known formula says

7T"/2
Va(r) = =———7r".
") = oD
We will need the following simple (and rough) corollary:

LEMMA 2.3: For natural numbers m and n, m < n, we have V,_,(1) <
n™V,(1).

We also need a standard estimate on the number of grid points in a set
depending on the volume of a suitable neighborhood.

LEMMA 2.4: Let X C R" be a bounded set, and let Z™ denote the grid of
integer points in R™. Then we have

|X NZ* < A" (B(X, Vn/2))

and also
|B(X,vn/2)nZ"| > A\*(X).

Proof: To each grid point g € Z", assign the axis-parallel unit cube centered
at g. For any g € X, this cube is completely contained in B(X,+/n/2) and this
gives the first inequality. On the other hand, if the cube of some g intersects X
then g € B(X,/n/2), and this gives the second inequality. 1

PROBABILITY THEORY RESULTS. In probability estimates, we will mostly follow
the rule “whenever you see an expression 1 — z (with z small), estimate 1 —z <
e ®.” We also need a tail estimate for the probability that at least a events
among m very rare independent events occur:
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LEmMMA 2.5 (Poisson approximation to binomial distribution): Let
X1, Xs,. .., X,n be mutually independent random variables, each attaining value
1 with probability p and value 0 with probability 1 —p, wheremp < 1. Leta > 1
be a parameter. Then

m

Prob l:Z X > a] < (emp)®.
i=1

Proof sketch: This follows easily, e.g., from Theorem A.12 in Alon and Spencer

[AS93]. In our situation, that Theorem says that the probability we are consid-

ering is below [eﬂ_lﬂ_ﬂ]pm with 8 = a/pm. Using e#~! < ef and 1/a < 1 gives

the form in Lemma 2.5. |

Next, we recall the so-called Lovasz Local Lemma about events with a bounded
dependence (see [AS93] for a proof):

LEMMA 2.6 (Lovész Local Lemma): Let Aj, As,...,A, be events in some
probability space. For each i =1,2,...,n, let D(i) be a set of indices such that
the event A, is independent of all the events A; with j € {1,2,...,n}\ D(i)
(note that i € D(i)). Suppose that numbers zy,zs,...,z, € (0,1) exist such
that
ProblA;] <z; [[ (1-=2))
JjeD(i)
holds for all i = 1,2,...,n. Then the probability that none of the events
A1, Ag, ..., A, occurs is strictly positive (in symbols, Prob [/\?=l Zi] >0).
We will use the following consequence.

COROLLARY 2.7: Let the events A; and the sets D(i) be as in Lemma 2.6, and
suppose that

Z Prob[A;} <1/2e
jeD(i)

holds for each i. Then we can conclude Prob [A\]_; 4;] > 0.

Proof: Put z; = eProb[A4;]. We have, in particular, z; < % for all ¢, and so the
inequality 1 — z; > e~2% holds (elementary calculus). Hence [] jep@(1—25) 2

exp (—2 Y ien) 933-) > e~!, and we can use Lemma 2.6. |
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3. Convex functions and coverings

Let f be a convex continuous function on £z, and let D be the set of points where
f is Fréchet differentiable. Our original aim was to find f so that the complement
of D is not Haar null. (The class of Haar null sets [Chr74] is bigger than the
class of Aronszajn null sets, hence it is, of course, “easier” to find f with €5~ D
not Haar null than to find f with D Haar null, and this is “easier” than to find
f with D Aronszajn null.)

If we considered functions defined on a nonreflexive Banach space instead of on
£y, we could get such an example as follows. According to [MS96), there exists
a closed convex set K C X with empty interior which is not Haar null. The
function f on X defined as the distance from K is convex and continuous, and
it is Fréchet differentiable at no point of K. However, we want to construct an
example on the separable Hilbert space, and each closed convex set in £, with
empty interior is Haar null [Mat97], [Mat]. (Let us remark that this result holds
also in a considerably more general setting.) Therefore, we cannot simply use a
distance function of a convex set and we have to proceed differently.

Our approach is based on suitable low-density packings of unit balls. Suppose
F is a collection of balls of radius 1 in £, such that | F is dense in £5. Put

N =0~ (Uan(0,5)).

Let C be the closed convex hull of the set {(y,t) € N xR: ¢ > ||y||?}. As observed
by Preiss and Zajicek [PZ84], the function f(z) = inf{t € R: (z,t) € C} is a
well-defined convex continuous function on #,, and it is not Fréchet differentiable
at any point of B(0,3) ~|JF. The latter can be proved by showing that the
subdifferential &f has oscillation 1 at each point of B(0,3) ™ |JF (we will recall
the definition of the subdifferential in Section 5).

How to ensure that the complement of | JF is large? First, we present a
heuristic consideration which doesn’t quite work but might perhaps be helpful
for understanding the actual proof.

Let B be a covering of R™ by unit balls (that is, B is a set of unit balls in R"
with |J B = R*). The upper density of B, denoted by d(B), is defined by

= Y. Bes: BcBO,R) A (B)
d(B) =1li . 2
(B) =lim sup === B0, R)

where A" denotes the n-dimensional Lebesgue measure. Rogers [Rog57] estab-

lished the existence of coverings with a relatively small upper density. Namely,
he proved the existence of a covering B, of R™ by unit balls such that

d(B,) <nlnn+nlinlnn + 5n.
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Let Z, denote the set of centers of the balls in such a covering B,. Set r, =
1+ 1/y/n, and put C,, = r,Z,. Hence C, determines a low-density covering of
R™ by balls of radius r,,. At the same time, setting F, = {B(c,1): ¢ € C,}, one
can calculate that the upper density of F,, decreases to 0 very quickly as n — oo
(it is roughly of the order e™V7"). If we now identify R* with the linear span of
{e1,e2,...,e,} in £y and define F = {By,(c,1): ¢ € Cp,,n € N}, then clearly | JF
is dense in £;. Since the density of the coverings F,, decreases to 0 (this means
that the fraction of the volume of R™ covered by the balls of radius 1 centered
in C,, decreases to zero with the dimension), we can hope that there will be still
“enough” space in ¢; left after removing all the balls in F. This is roughly how
the proof of Theorem 3.1 below goes, but instead of the result of Rogers we use
Lemma 3.3 below and choose the increasing sequence of subspaces of £, more
carefully.

THEOREM 3.1: There exists a convex continuous function f on the separable
Hilbert space such that the set of points where f is Fréchet differentiable is
Aronszajn null.

In Section 5 we show that f can even be an equivalent norm.

In order to control the measure properties of sets, we will use 12-dimensional
test cubes®. We let Uy be the unit cube [0,1]'%. Since we consider each R”
canonically embedded in £3, Uy is also a subset of 3. By a test cube, we mean
any congruent copy U of Uy in £5. In other words, if ¢ € 5 is a translation
vector and u = (uy,usg, ..., u12) is a 12-tuple of orthonormal vectors in £, we set

12
U:{xo-i—Zaiu,»:Ogaigl,i:1,2,...,12}.

=1

We denote the 12-dimensional Lebesgue measure on U by A\y. Theorem 3.1 is a
consequence of the following:

PROPOSITION 3.2: Let € > 0 be given. There exist a number v > 0 and a
countable set C C £y such that

(A) for any 6 > 0, B(C,r + 6) = #2, and

(B) A\u(U N B(C,r)) < ¢ for any test cube U.

* Why just 12-dimensional? This is the smallest dimension where certain technical
calculation goes through. With some more effort, the proofs could be made to
work also with a somewhat smaller dimension as well, but, interestingly enough,
it seems that the current proof method cannot work for a cube of dimension
smaller than 3.
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Proof of Theorem 3.1: For each m € N, apply Proposition 3.2 with ¢ = 1/m,
obtaining r,, > 0 and a set Cp,. Put F = (\oo_, B(Cy,7). To see that F
is Aronszajn null, it is enough to show that the intersection of F' with any 12-
dimensional affine subspace Z of ¢; has 12-dimensional Lebesgue measure zero.
The space Z can be covered by countably many 12-dimensional test cubes. If
U is any such cube and m € N then Ay(U N B(Cyn,7.)) < 1/m; consequently
Au(U NF ) =0.

By a result of Preiss and Zajitek [PZ84], there exists a convex, continuous
function f defined on ¢; such that f is Fréchet differentiable only at points of
F. (Construct countably many functions f,, similarly as was described in the
beginning of this section, and put f = > °_, amfm, where the a,, > 0 are
sufficiently small.) |

We are going to prove Proposition 3.2 from a somewhat technical Lemma 3.3
below on ball coverings in R*. As was mentioned in the introduction, there is
a much simpler and direct proof due to Preiss. Readers interested (naturally
enough) in this simplified proof may read the appendix and skip the rest of this
section and the next section.

Let K be some (yet unspecified) large natural number. This time we will use
K-times enlarged test cubes. So we let Tp = [0, K]'%, and for a vector z¢ € £
and an orthonormal family u = (ug,uz,...,u12) in €3, we put

12
T = T(zo,u) = {x0+2aiui:0§ai 5K,i:1,2,...,12}.

=1

We let affT denote the affine span of T in £y, that is,

12
afiT = {:1:0 + Zaiui: a; € R} .

i=1
Let g = ur be the uniform probability measure on T (obtained by re-scaling the
12-dimensional Lebesgue measure).

Let v € £, be a point. We say that v is of type j with respect to T if
dist(v,T) < 1 and the distance of v from affT is at least 1 — 277+ and at most
1—277. (The type of a point v essentially determines how large a part of T' does
a unit ball centered at v cover.) Now we are ready to formulate the key lemma.

LEMMA 3.3: Let a number Ky be given. Then we can choose numbers K =
K(Ky) > Ko and ng = no(Ko) so that for any natural number £ > ng, a natural
number n = n(¢) > £ and a countable set C = C(n) C R" exist with the following
properties:
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(i) We have Bg~{C,1+d) = R"™, where § = §(n) > 0 is a function of n tending
to 0 with n — oo.

(ii) Let T = T(z,u) be any congruent copy of the cube Tg in 3. We let CT>I
denote the set of all points ¢ € C that are of type j with respect to T.
Then we have, for any T and any j,

. 1

(iii) The distance of C from the subspace of R spanned by the first £ coordinate
axes is at least 1, that is, ||c[£+1..n]|| > 1 for each ¢ = (c1,¢2,...,¢n) € C.

Figure 1. Illustration to the statement of Lemma 3.3.

Figure 1 illustrates the situation the Lemma talks about; for obvious reasons,
we had to reduce the dimensions somewhat, and so ¢5 is pictured 3-dimensional,
n =2 ¢ =1and T is shown 2-dimensional. Lemma 3.3 will be proved in
Section 4.

Proof of Preposition 3.2:  Let € > 0 be given, and let us set Ko = max{1/¢, 108}.
Let K > K and 1y be as in Lemma 3.3. We will show that there exists a subset
C’ of ¢, so that
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(A!) for any § > 0, B(C,1 + §) = £o, and
(B") pr(T N B(C,1)) < ¢ for any congruent copy T of Tp.

Once we prove this, the Proposition is obtained by putting r = 1/K and C =
(1/K)C’.

For k = 1,2,..., put ny = n{ng_1), where n(£) is the function as in Lemma 3.3.
Let Cy = C(nx) C R* C €3 and 6, = d(ng) be as in Lemma 3.3. We put
C’ = U;ozl Ck.

The condition (A’) is straightforward to check. Consider any point z =
(z1,%2,...) € €3 and an arbitrarily small number v > 0. Let k& be large enough
so that 6 < /2 and ||z[ng +1...]|| <<y/2. Then, by Lemma 3.3(i), there exists
a point ¢ € Cy with |jc — z[l.ng]l| <1 ++/2 and we get |lc—z|| < 1+4.

To verify condition (B’), let T = T'(zg,u) be a congruent copy of the cube Tj.
For j =1,2,..., let I; be the set of all the indices £ > 1 such that Cj contains
at least one point of type j with respect to T. We claim that |I;] < K32%.

We may assume [; # (. We let m = minl;. Since all points of Cp, lie in
the subspace spanned by the first n,, coordinates and some point of C,, lies at
distance at most 1 from T, we have ||z1[nm +1...]|| <1 for some point 2, € T,
and consequently

(1) fzofnm + 1.l < llz1[am + 1.. ]| + diam(T) < 1 + V12K < 4K.

Next, consider an index k € I;. Let ¢ € Ci be such that dist(T,c) < 1 and

dist(affT, ¢) < 1—277. Let x € affT be the point attaining the distance of affT to

this c. We have ||z—c|| < 1—277 and also dist(T, z) < ||z—c||+dist{c,T) < 2. We

can write z = a;0+zgl b;u; for some numbers by, ..., b5 with |b;| < K42 < 2K.
By Lemma 3.3(iii), we have |c[ng—1 + 1..ng]|| > 1, and hence

|Ix[nk_1 + 1..nk]|| > l|c[nk_1 + 1..nk]|] — ”(C— .’L‘)[nk_l + 1..nk]||
>1-(1-279) =277,

Therefore, at least one of the following inequalities holds:

1
(2) llzo[nk—1 + L.mg]|| > B .93
or, for some i € {1,2,...,12},

1 1 .
; ol > == =27
Q oo+ Lol > 5 - 72 -2
Let Jo C I, be the set of those indices k # m for which (2) holds, and let J; C I;
be the set of indices k # m for which (3) holds with i, i« = 1,2,...,12. There
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exists an 49 € {0,1,...,12} with |J; | > (|I;] — 1)/13 (pigeonhole). First, we
consider the case ig = 0. Then we have, by (1), by the theorem of Pythagoras,
and by (2),

(4K)? > flgo[nm + 1. > = > llwofne—1 + Longl|? >
kel

and |[;| < 16K%-13% 2% +1 < 2% K3 follows. A similar calculation works in
the case iy € {1,2,...,12}, using the unit vector u;.
Using Lemma 3.3(ii), we can now calculate

pr(T N B(C',1 i (TﬁBCk,) ZZuT(Tr\BCZJ 1))

k=1 k=1j=1
oo oo
T,j
= Zl <TOB(C I 1)) < 21””1@24:
= J

Proposition 3.2 is proved. 1

|

I/\

4. Proof of Lemma 3.3

In the proof, we assume that K = K(Kj) is a large enough natural number (just
how large can in principle be determined by an inspection of the calculations
below), and that ng is still much larger than K. The dimension £ > ng is given,
and n = n(¢) is chosen large enough in terms of £ (e.g., n = £3 will work). We
think of £ and n as tending to infinity, while K is very large but fixed. We set
d =68(n) =4//n.

To construct the set C, we set L = K2, we choose a suitable finite set D C
[0, L), and we replicate D periodically with period L along each axis; in other
words, weset C = D+ LZ". Since we need to replicate also other sets periodically
in this manner, let us write X# = X + LZ" for an arbitrary set X C R” (so that
C = D¥#).

Let us set n = 1/n, and let Gy be the points of the grid with spacing 7 within
the cube [0, L)", that is, Go = nZ"* N [0,L)*. The set D will be chosen as a
suitable subset of Gyp. In order to satisfy condition (iii) of the lemma (distance of
C from the subspace spanned by the first £ basis vectors), we define the “forbidden
region”

F={zeR"|z[f+1.n]] <1}
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and we set G = Gy ™ F¥#.

Let p € (0,1) be a real parameter; its value will be fixed later. Let D C G
be a random* subset of G, where we include each point x € G into D with
probability p, this choice being mutually independent for distinct points . From
such a random D we construct the set C = D# as above. We will show that ‘he
probability of obtaining a set C = D# satisfying the properties required in the
Lemma is nonzero, and consequently the required C exists. Note that condition
(i) of the Lemma will be automatically satisfied for any C = D#, with D C G.
A two-dimensional picture, with £ = 1 and n = 2, can perhaps be slightly helpful
(although it is misleading too); see Figure 2.

L] L L] L]
L] L]
(L,L) B
o 0o o 00 0O 0 0 0
L] e 0O 0O 0 C O OC ®O .
L] = o 0 O @ 0 O O L ]
L] . D c o e ™ c€e(
[ ] [ ] o L] [ ]
0.0 000000000
=
2 I
(0;0)
L L L] L
L L

Figure 2. A 2-dimensional illustration to the proof of Lemma 3.3.

For each z € Gy, let A; denote the event “c ¢ B(C,1+ 6/2)”. Since each
point x € [0, L)™ lies at distance at most 7y/n < §/2 from some point of Gy, if
none of the events A; for z € Gy occurs then B(C,1+4) = R™ and condition (i)
holds.

Let us estimate the probability of the event A;. A given point z € Gy is
covered by B(C, 1+ 6/2) if and only if some point of the set B(z,1+ §/2) NnZ™
falls into C. There is a slight complication since the grid points in the forbidden

* The underlying finite probability space is (2G,22G,Prob), where for each atom
D C G we have Prob(D) = p!Pl(1 — p)!¢> DI,
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region F# are not chosen into D. The probability of z not being covered by
B(C,1+ 6/2) is thus Prob [4,;] = (1 — p)*=, where

vz = |B(z,1+6/2) NGF|.

A simple calculation, which we postpone, gives the following:

CraM 4.1:  For any = € Gy, we have

Vo (1450712
nn

Vg 2 V=

(recall that V,(r) denotes the volume of the n-dimensional ball of radius r).

Let us put p = (2ninn)/v. We show that for this setting, there is a fairly
small probability that any of the events A, occurs. We have

Prob [some A, occurs] < Z Prob [Az] < |Gol(1 — p)” < (L/n)"exp(—pv)
z€Go

<exp(nlnL +nlonn—2nlnn) = (L/n)".

The last expression quickly tends to 0 for n — 0o, and so we can assume

1
(4) ; Prob[4,] < -,
say. Hence for the given choice of p, the covering condition (i} in Lemma 3.3 is
typically satisfied.

Next, we are going to deal with condition (ii) (sparse covering of all the 12-
dimensional cubes T'). First we note that although the Lemma considers all cubes
T in €5, we may restrict ourselves to cubes T' C R®, where we write 7 = n + 13.
This is because if T C ¢, is an arbitrary 12-dimensional cube, there exists an
isometry of the linear span of T UR™ onto R™ fixing R".

For a given congruent copy T of T, we now estimate the probability that our
random set C = D# contains many points that are close to 7. This amounts to
a volume computation plus an application of a large deviation tail estimate for
the binomial distribution.

CraiM 4.2:  For any congruent copy T of Ty and any real number p € (0, %], we
have

Prob[l{x € C: dist(z,affT) <1 - p/2 and dist(z,T) < 2}| > Kp_z]

< exp( - Kn/lOp).



14 J. MATOUSEK AND E. MATOUSKOVA Isr. J. Math.

This claim, whose proof we again postpone, allows us to estimate the prob-
ability that a given fraction of some fixed cube T is covered by the unit balls
centered at points of C that are of type j (because we can estimate the area
covered by one such ball). But we need to handle all possible T’s at the same
time. Similarly as we did for the covering property (i), we replace the set of all
T’s by a suitable discrete approximation. This time we need one family 7; of
cubes for each j, and also we need a bit more sophisticated choice of these cubes
than just taking translates and rotations in a sufficiently fine grid.

For a given j, set p = 277, and let N be a p/4-net in the large cube [0, L)"
(recall that # = n 4 13). That is, N is an inclusion-maximal subset of [0, L)"
such that every two points of N have distance at least p/4. Further let M be a
set of orthonormal families as in the following Claim (whose proof is, as usual,
postponed):

CraM 4.3:  Let p € (0,1). There exists a set M consisting of orthonormal
12-tuples v = (vy,...,v12) in R™such that given any orthonormal family u =
(uy,ug,.-.,u12) in R®, there is a v € M with |v; — z|| < p/K? for all i =
1,2,...,12, and moreover we have

| < (&%)

We define T; = {T(zo,v): 2o € N,v € M}. It will be notationally convenient
to assume that the families 7; are all disjoint. For a T' € T;, let Ar be the event

“for more than Kp~2 points z of C, both dist(z,affT) < 1 — p/2
and dist(z,T) < 2 holds, where p = 277",

To establish Lemma 3.3, it is sufficient to prove the following two claims:

CLAM 4.4: If the set D is chosen at random in the above-described manner,
then with a positive probability, none of the events A, for z € Gy (grid points
uncovered) and At forT € Tj, j = 1,2,..., occurs.

CLAM 4.5:  If none of the events Ar occurs, T € T;, j = 1,2,..., then the
condition (ii) in Lemma 3.3 is satisfied.

Before proving these Claims, we formulate a simple geometric statement (whose
proof is omitted). This is the only point in the proof where the dimension of T’
really plays a role.

CLAIM 4.6: Let T be a congruent copy of Ty and = € £5 be a point at distance
at least 1 — p/2 from affT. Then B(z,1) NaffT is contained in a 12-dimensional
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ball of radius at most /p, whose Lebesgue measure is thus at most 8p%, where
[ is an absolute constant.

Proof of Claim 4.5: Let T be a congruent copy of T5. As was remarked above,
it suffices to consider the case T C R*, s = n + 13. Also, since C is L-periodic,
we can assume that 7' = T'(z,u) with z € [0, L)". Again write p = 277. By the
choice of 7}, we can find a Ty € 7; such that if y € affT and dist(y,7") < 1 then
there is a z € affTy with dist(z,71) < 1 such that ||y — z|| < p/2. Therefore, if
¢ € C is any point of type j with respect to T then dist{c, affTy) < 1 — p/2 and
dist(c, T1) <2

Since we suppose that the event Ay, doesn’t occur, there are at most Kp~2
such points c¢. By Claim 4.6, the unit ball around each such point ¢ swallows no
more than 3p® of the Lebesgue measure sitting on affT". Hence
b K _ ot
Kiz p2 = K4
if K is large enough. This establishes Claim 4.5. ]

pr (T BC™,1)) <

Proof of Claim 4.2: Put r =1— p/2. Let m denote the number of points of the
grid G# that are at distance at most r from affT" and distance at most 2 from 7.
Since the diameter of T'is /12K and the period of G¥# is L = K? > diam(T) +4,
no two of these points are a periodic replication of the same point in G. Hence
the number of the relevant points in C is the sum of m independent random
variables, each of them attaining value 1 with probability p and value 0 with
probability 1 — p. By Lemma 2.5, the probability we seek is at most (epm)¥/ pz;
it remains to estimate m.

Recall that we assume T' = T(z9,u) C R*. The number m is no bigger than
the number of points of the grid #Z" in B(T,2)N B(affT,r), with r = 1—p/2 and
the balls being in the f-dimensional space. Let Y be the orthogonal complement
of u in R*. Then B(T,2) N B(affT,r) is contained in the set

Z ={x+y: z e€aff TN B(zo,4K),y € Y, |ly]| < r}.

This is a Cartesian product of an (n+ 1)-dimensional r-ball and a 12-dimensional
ball of radius 4K. By the first inequality in Lemma 2.4, we get

) 277\/— Vl? (6K) Vit (T + 277\/—)
n" n
We have Vi5(5K) < (10K)'2, and we also get

Va1 (’”+ \/_> Vatt ( +_%£> <V, (r+n—1/2>,
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By substituting p = 2nlnn/v, with v =V, (1 + %n'lﬂ) n~™ as in Claim 4.1, we
get

(2nlnn).g™  (10K)'12V, (1 - 1p+n~1/2)

S V. (1+ a1 ' s
1-1p+ n-1/2\"
< opld 12 2
(5) < 2n*%(10K) lnn( T4 I 12

We have 2n'4(10K)2Inn < n!®. We distinguish two cases depending on the
value p. For p > n~1/2, we get

et 1+n_1/2—p/2 <ni5 (71— P "
TR 2(1+ §n=1/2)

n15(1 p/4) < n'Sexp(—np/4)
xp(—np/8)

(recall that n is large and pn > y/n). For p < n~!/2, we ignore the 3p term in
(5) and we calculate

Lpni2\" TRV
< plb < nld __3
pm=n <1+§n—1/2 s\
1 n
< nld (1 - Zn_l/2> < n¥exp(—v/n/4)
< exp(—v/n/5).

In both cases, simple estimates lead to (epm)K/?* < exp(—Kn/(10p)). Claim 4.2
is proved. 1

Proof of Claim 4.4: In order to show that the probability of none of the events
A, and Ar occurring is nonzero, we want to apply the Lovasz Local Lemma in
the form of Corollary 2.7.

First we note that although the number of the events Ar is formally infinite
(j can be any natural number), all but finitely many of them are impossible.
Namely, the event Ap requires in particular that |C| > Kp~2 with p = 277.
Since no two points of C interacting with T' can be periodic replications of the
same point of D, we also have |D| > Kp~2. Since |D| < |G| is bounded by some
function of n, Ar is impossible for j too large.

For each of the events A, and Ar, we need to find all other events it might
possibly depend on and sum up their probabilities. We need not care about the
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dependence on the events A, since we have calculated in (4) that all these events
1
100°

Let us consider an event A,, and let us look which events Ay may possibly

together have probability at most

affect A,. Clearly, if A; is not independent of Az then there must be a point
y € G such that the event “y € D” influences both A, and Ar. If A, should
depend on “y € D” then some periodic copy y; € y + LZ™ of y must lie in
B(z,1+6/2) € B(z,2). Similarly, “y € D" interacting with Ar means that
some yo € y+ LZ" lies in B(T,2) C B(zg,4K) where T = T(z¢,u). Putting this
together yields that zg € B(z,5K)* = B(z,5K) + LZ" for any T = T{xg,u)
with Ar affecting A,.

We recall that the set 7; was defined as {T'(z¢,v): 20 € N,v € M}, where N
is a p/4-net in [0,L)", p =277, and M is as in Claim 4.3. By a standard volume
argument, we get that the number of points of N in any ball of radius 5K is at
most

Va(5K +p/8) _ (501{)"
Va(p/8) p .

Moreover, since L > diam(B(z,5K)), at most 3" periodic copies of B(z,5K) in

B(z,5K)* may intersect the cube [0,L)". Therefore, the number of events Ar

with T' € 7; that may possibly influence A, is bounded by

0K n bn
" (5) mi=(5)
p p

for an absolute constant b. Using Claim 4.2, we get that the sum of probabilities
of these Ar’s is bounded by

(5)" o (1) o -]

If K is large, the expression in the exponent is at most —Kn/(20p) = —Kn27 /20.
By summing over all j = 1,2,..., we conclude that the sum of the probabilities
of all events that may possibly influence our event A, is small (smaller than any
prescribed constant). A similar reasoning gives the same estimate for the events
some Ar may depend on. Claim 4.4 thus follows from Corollary 2.7. ]

Remark: It seems that sum of the probabilities of all the events A7 together
(not only of those that some other among our events depends on) cannot be
bounded. The reason is that we need too many events Ar. Namely, for j being
a small constant, the probability Prob[A7] with T € 7; can only be bounded by

a function exp(—an) for some positive constant «, but the number of points of a
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277~ lnet in the cube [0, L|™ grows superexponentially with n (because the ratio
of the volume of a cube and its inscribed ball grows superexponentially with the
dimension). Somewhat ironically, this is the only reason for applying the Lovasz
Local Lemma (instead of simply summing up the probabilities). This, in turn,
forces us to choose the points of D from a discrete set by independent trials
(instead of the perhaps more natural way of choosing D) as v independent points
uniformly distributed in [0, L)™).

Proof of Claim 4.1: First, we count the points of the full grid G?f = nZ" falling
into B(z,1+ §/2). By the second inequality in Lemma 2.4, this number is at
least V(1 +6/2 —ny/n/2)/n" = Vo (1 + 3n=1/2) /.

Next, we estimate the number of points in nZ™ N B(z,1 + 4/2) falling into the
forbidden region F#. The region F# consists of translated copies of the cylinder
F ={y € R*: ||y[f + 1..n]|| < 1}, and the ball B(z,1 + §/2) may only intersect
one of these copies; so we may as well assume it intersects F itself. We have

B(z,1+6/2NFC{zeR: |lz—z|| <1+6/2) x {Z e R4 |||} < 1}

(Here we consider R*~¢ as the span of eg1.1, . .., e,.) If this last region is denoted
by R, the number of points of the grid #Z" in R is no more than the volume
of the 1ny/n-neighborhood of R, by Lemma 2.4. The volume of B(R,n/n) is
bounded by
Ve(1 + 30"V V,_o(1 4+ n~12).

Using Lemma 2.3, one can check that if n is large enough in terms of £ (n = £3 will
do), then the last displayed expression is smaller than V,(1 + 2n~1/2) (say).
Therefore, v, > 1V, (1+ %n‘lﬂ)/nn > Vo(l+ %n‘lﬂ)/n". This finishes the
proof of Claim 4.1 and thus also of Lemma 3.3. ]

Proof of Claim 4.3: 1In the Claim, we have used the maximum metric for mea-
suring the distance of two 12-tuples. For the proof of the Claim, it will be
more convenient to use the Euclidean metric, that is, we consider the metric
space U of all orthonormal 12-tuples u in R™ with metric given by dist(u,u’) =

(leil [lw; — ui“z) 1/2. This metric space can be isometrically identified (as a
subset of the f5-sum of 12 copies of R®) with a subset of R'?7?; it even lies in
the ball B(0,v/12) C B(0,4) in R'?®. We choose M as a pj-net in U, with
p1 = p/K?. In R¥?" the balls of radius p; /2 around the points of M are disjoint
and they are also contained in the ball B(0,5), say, and so we get

~ 2y 127 3\ 127
Viza(p1/2) p P
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5. An almost nowhere Fréchet smooth norm

In this section, we strengthen Theorem 3.1 as follows:

THEOREM 5.1: There exists an equivalent norm p on {5 such that the set of

points where p is Fréchet differentiable is Aronszajn null.

The proof is not conceptually difficult but a bit technical. The idea how to
get the points where a convex function is not Fréchet smooth is the same as in
[PZ84]. In order to prove easily that a certain set is Aronszajn null, we intersect
a sphere by cones instead of intersecting a paraboloid by cylinders as in [PZ84].
Proving the non-differentiability then requires more computations.

We begin with some notation and preliminaries; see, for example, the book
[Ph89] for more details. If f is a convex continuous function on ¢, we define the
subdifferential of f at a point = € ¢5 by

0f(z) = {u € ba: (u,y — ) < f(y) ~ f(a) for all y € Lo}

(The elements of the subdifferential are thought of as hyperplanes supporting the
graph of f at (z, f(x)).) The oscillation of f at the point » is given by

osc(f,z) = limsup{lju —of|: |z — yl < t,u € 0f(x),v € Of(y)}-

The function f is Fréchet differentiable at a point z exactly when osc(3f,z) =0
(see e.g. [Ph89], p. 19).

When we try to construct many points of non-smoothness, sums of convex
functions have the advantage that none of the functions in the sum can destroy
the “bad” points of the other functions.

LEMMA 5.2:  Let f and fi, f2, fs,... be convex continuous functions on £,
such that f = >_:2, fi. Let D; be the set of points where f; is not Fréchet
differentiable. Then f is Fréchet differentiable at no point of the set | J;o, D;.

This seems to be a folklore result but we know no explicit reference, so we
include a short proof.

Proof: Since f = fr + Zfz_ll fit Yo7k 41 fis it is enough to show the statement
for f = fi+ f2. Sosuppose that z € D;. If f; or fy are not Gateaux differentiable
at z then f1+ fy is also not Gateaux differentiable at z either since 3(f1+ f2)(z) =
Of1(z)+0f2(z), and Gateaux differentiability of convex functions is equivalent to
single-valuedness of the subdifferential. So suppose both f; and fy are Gateaux
differentiable at = and denote by u; the unique element of 8f;{x). Since f; is not
Fréchet differentiable at x, there is an @ > 0 such that for ¢ > 0 arbitrarily small
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we have some y € £ with ||z — y|| < ¢t and fi{y) — f1(z) ~ (w1, y — 2) > allz —y|l.
Since fa(y) — fo(z) — (uz,y — ) 2 0, we get fi(y) + fo(y) — (f1(2) + fao(2)) —
(w1 +ug,y —x) > allz —y|, and fi + f2 is not Fréchet differentiable at z. N

Let K C {3 be a symmetric, closed, convex, and bounded set containing the
origin in its interior. Let p > 0 be such that B(0,p) € K. The Minkowski
functional p: £ — R of K is given by

p(z) = inf{t > 0: z € tK}.

Such a p defines an equivalent norm on ¢;. The subdifferential Op{x) is related
to the supporting hyperplanes of K as follows (see, e.g., [Ph&9], p. 78):

LEMMA 5.3: Let p and p > 0 be as above, and let 0 # x € £3. Then v € 9p(x)
holds for a v € ¢y if and only if {(v,z) = p(z) and v supports K at the point
z/p(z). This means that

1= <U,Z%> = max (v,y).

In particular, any v € Op(z) satisfies ||vf] < 1/p.
For a set A C {5, let dcone(A) denote the double cone of A with apex at the
origin, that is,
dcone(A) = U tA,
teR
and similarly
cone(A) = U tA.
20

Theorem 5.1 is an easy consequence of the results presented in the preceding
sections and of the following:

PROPOSITION 5.4: Let u € ¢, be a unit vector and let H be the hyperplane
u + Keru (where Ker u stands for {z € £5: (u,z) =0}). Let r > 0 and let F be
a family of balls in H (relative to H) of radius v such that |JF is dense in H.
Then there exists an equivalent norm p on £ such that p is Fréchet differentiable
at no point of the set D = dcone(H ™ |J F).

Proof: 1f |/ F = H the result is obvious (put p = ||.||), so we may assume that
there exists a point a € H ~JF. Let

K =tomv(B(0,1) | 7).
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The set K is closed, convex, bounded, and symmetric. Since K contains the
points a/||a|l and —a/|la|| and the set B(0,1) N Keru, there exists a p > 0 with
B(0, p) C K. Therefore p, the Minkowski functional of K, defines an equivalent
norm on ¥¢3. It remains to show that p is not Fréchet differentiable at any point
r €D, z#0.

Without loss of generality we can suppose that ||z]| = 1 and (z,u) > 0. Let us
set @ = (z,u). This is a fixed positive number (depending on z only). We will
show that

osc(Op,z) > B = pla)

for a certain positive § depending on « only, and consequently p is not Fréchet
differentiable at x.

Clearly z € bdr K and hence p(z) = 1. Since z supports B(0,1) D K at
the point z and {z,z) = 1, we get z € JIp(z). Next, we want to exhibit an
element v of the subdifferential dp(y) at a point y arbitrarily near to x such that
lz—of 28

Let € > 0 be an arbitrarily small number (going to 0 while & and anything
depending on « only are fixed). Let mg: H — bdr B(0,1) be the central pro-
jection of the hyperplane H to the unit sphere, given by my(w) = w/|jw]|. Put
TH = 7@1(37), and choose a ball By € F at distance at most £y from z g, where
€1 is chosen small enough in terms of € and a. Let Zy be the point of By nearest
to g, and put & = my(Zy); see Figure 3. Since wy is continuous, £; can be
chosen in such a way that ||z — Z|| < pe.

H TH i_ﬂ BH
T I
y
u z K

Figure 3. The situation in Claim 5.5.

We need the following geometric claim:
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Cramv 5.5:  There exists a point z such that the segment Tz = conv{Z, z} does
not intersect the interior of K, and ||z|| < 1 ~ v, where v > 0 depends on « and
r but not on €.

We prove this claim later. Assuming its validity, we first finish the proof of
Proposition 5.4. Let y be the point on the segment %z given by y = £++/(2 — ).
Let v lie in the subdifferential dp(y). By Lemma 5.3, we have |jv|| < 1/p. The
same Lemma further gives {(v,y) = p(y) > 1 (because y ¢ int K}, and also
{(v,zy < 1since z € K. We calculate

(v, 2y = (v, 2 —z)+ (w,z) <||v||- |Z—=zl| +1 <1 +e.
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Then we have

fo—afl > <—ﬂ> > (w—2,2) 21— v ] 2] = 1 vE-(1-7) >

o2

Proposition 5.4 is proved; it remains to prove Claim 5.5.

Proof of Claim 5.5: The idea is to show that the portion of the unit ball “bitten
off” by the cone C = cone(Bpy) is “sufficiently deep“. Namely, we want to choose
a suitable z in such a way that the hyperplane Z = 2z 4 Ker z contains Z and
satisfies Z N B(0,1) C C (Figure 4).

By

conv(B(0,1)\ C)

Figure 4. Illustration to the proof of Claim 5.5.
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The situation is not as simple as a two-dimensional picture might suggest,
since C is in general an elliptic cone rather than a circular one. But if we
show that C can be written as a union of circular cones with opening angle
bounded from below (i.e. cones of the form cone(B(q,r1)) with ||¢|| = 1 and with
some fixed 7, > 0 depending on r, &) we are done: we can take a circular cone
C’ = cone(B(q,71)) C C having Z on its boundary, and let Z be the hyperplane
cutting off exactly the cap of the unit sphere contained in C”.

To show that C is a union of suitable circular cones, we first consider the cone
Cy = cone(B(u,r) N H); see Figure 5. This cone also equals cone(By), where
By = B(u,r’) is a ball of a suitable radius ' = r/(r) (somewhat smaller than 7).

Figure 5. The affine map F sending Cy to C.

Let cy denote the center of the ball By in H. Consider the linear map F: {5 —

4o given by
F(z) =z + (u,z)(cy — u).

Within H, F acts as the translation by the vector cg —u, hence By = F(B(u,r)N
H), and consequently C = F(Cj). The ball By is mapped to an ellipsoid F; for
our purposes, it suffices that the intersection of E with any 2-dimensional affine
subspace containing cy is an ellipse. If ag denotes the supremum and bg the
infimum of lengths of the semiaxes of these ellipses, then

1 1
op=7|F| and - = Ljr.
Since both the norms ||F|| and ||F~!|| are bounded by functions of ||cx||, both
1/bg and ag can also be bounded by functions of ||cy|| and r.
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It remains to show that E can be expressed as a union of balls of a fixed
radius 72 > 0 (depending on ag and bg). In fact, we only need to show that
the points on the boundary of E are contained in such balls. Let z € bdr E,
and let B, be a ball of some radius r; containing z at its boundary and having
the same tangent hyperplane at = as E does (and lying on the same side of
this hyperplane as E). If B, is not completely contained in E then there is a
2-dimensional plane 7 containing x and the center of E such that B, N7 is not
contained in ENT. Since B, N7 is a circular disc of radius at most ro and EN7 is
an ellipse with semiaxes lengths lying in the interval [bg, ag], it suffices to check
the following statement in the plane: If F is an ellipse with semiaxes lying in an
interval [b, a], 0 < b < a, then there exists a radius r, = r3(a, b) such that for any
point z € bdr E, the circle of radius r2 touching E at z from inside is completely
contained in E. This can be checked by elementary arguments. In fact, the value
r9 is the reciprocal the maximal curvature of an ellipse with semiaxes a and b,
and we can set 7o = b%/a. [ |

Proof of Theorem 5.1: 'We fix a unit vector u € {3 and set H = u + Keru. By
Proposition 3.2 there exists, for each m € N, a family F,,, of congruent balls in H
(relative to H) such that | J F,, is dense in H and Ay (U NY Fr) £ 1/m for each
test cube U in H. By Proposition 5.4, there exists an equivalent norm p,, on
¢, which is Fréchet differentiable at no point of the set dcone(H ~|JF,,). Put
P =Y. amPm, Where a,, are sufficiently small positive numbers (if p, < cmll.||
then put a,, = 1/2™cy,, say). Then p is an equivalent norm on ¢, which can be
Fréchet differentiable only at points of (,._, dcone(lJ Fm), by Lemma 5.2.

Let z € £, and let X be a 12-dimensional subspace of Ker u. Write z = tu+xo,
with t € R and zg € Keru. If ¢ # 0, we have

o

dcone (U fm> =t(u+ %CL‘O +X)nN ﬂ dcone (U ]-'m)

=t<(u+%x0+X)ﬂ ﬁ Ufm>.

Similarly as in the proof of Theorem 3.1, we see that the 12-dimensional mea-

z+X)N

T8

1

sure of the set in the parentheses is zero for each ¢ # 0. Since the hyperplane
Keru (corresponding to t = 0) is Aronszajn null, the set (o-_; dcone(lJ Fp,) is
Aronszajn null by Lemma 2.2. This proves Theorem 5.1. |
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A simple proof of Proposition 3.2 according to David Preiss

Here it is convenient to take 5-dimensional test cubes. So by a test cube, we mean
any congruent copy U of the 5-dimensional unit cube [0,1]% in £;. We denote
the 5-dimensional Lebesgue measure on U by Ay. In the proof we will again use
the K-times enlarged test cubes congruent to Ty = [0, K]°; for an orthonormal
family u = (uy,...,us) in £p and z € €5, we put

5
T=T{z,u) = {$+Zaiui: 0<a; <K,i= 1,...,5}.
=1
Let p = pup be the uniform probability measure on T obtained by re-scaling the
5-dimensional Lebesgue measure.
Instead of Claim 4.6 we use the following.

CLAIM 4.6": Let Z be a 5-dimensional subspace of {» and let x € €3 be so that
dist(z,Z) > 1 — p for some 0 < p < 1. Then B(z,1) N Z is contained in a 5-
dimensional ball of radius at most 2./p, whose 5-dimensional Lebesgue measure

5/2

is thus at most Bp°/°, where 3 is an absolute constant.

For the reader’s convenience, we recall the statement being proved.

PRrROPOSITION 3.2: Let ¢ > 0 be given. There exist 2 number v > 0 and a
countable set C C ¢y such that

(A) for any § > 0, B(C,r + §) = £;, and

(B) Ay(UNB(C,r)) < ¢ for any test cube U.

Proof: Let (e,) be the orthonormal basis of €. For z € ¢, we define the support
of z as sptx = {¢ € N: (z,€;) # 0}. Let (zx)§2, be a dense sequence in £2 with
each zy finitely supported. Choose n; < mp < --- such that maxspt(zg) < ny.
Define ¢, = zx + e,, and C = {cx: k € N}. Let ¢ > 0 be given. We will show
that for K > 0 large enough
(A’) for any § > 0, B(C,1+ 6) = {5, and
(B') pur(T N B(C,1)) < ¢ for any congruent copy T of Tp.
Once we prove this, the Proposition is obtained by putting r = 1/K and replacing
C by (1/K)C".

The condition (A’) is satisfied since z € B(cg, 1) for all k.

To verify condition (B'), let T' = T'(z,u) be a congruent copy of the cube Tp.
Put Dy = Blz,R) N aff(T), where R = 10K, and for j =0,1,... let

Ij = {k’ eN:'1- 9= < diSt(DT,Ck) <1-— 2—j—1}.
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Further, let wy € Dy denote a point attaining the distance of Dy to ¢, i.e. with
lwg — ck|| = dist(Dr, cx). If dist(ex, T') < 1, then k € I; for some j, and we have
u(T N B(ck, 1)) < B27%/2/K> by Claim 4.6'. Hence

(6) u(B(C,1)NT) < % ig—@'/?l]jl_
3=0

To estimate |I;|, we first observe that for all but few £’s in I;, e,, is near-
orthogonal to spanu. Namely, set 7 = 1/5R -2/*? and define

I =A{k € I;: {us,en,)] <nforalli=1,2,...,5}.
Since each wu; is a unit vector, we have
l{k eN: '(uiaenkH 2 77}' < 77‘27

and hence |I; ™ I}| < B, K*2%, ) a constant.
Next, we bound |I}]|. We have

”wk - Ck” > I(wkaenk> - <Ck’enk>| = I(wk76nk> - ll,
and since ||wx — cx|| < 1 — 27971 we derive (wg,e,,) > 27771 Writing
wr =2+ Z?=1 o;u;, where |a;| < R, we get

(z,en,) = (Wky€n,) — DRN > 2732,

On the other hand, for all k¥ € I} we have ||z[nx + 1...][| < ||z — cli < 2R, and
so if p is the first index with ||z[p+ 1..]|| < 2R, we find

AR > ||lzlp+1.. 17> > (men,) > (] -1)-27%74
kEI;,nk>p

Estimating |I}| from this inequality and combining with the bound for |I;  I}|
derived above, we get that |I;| < ($22% K2, where 3, is a constant. Finally, by
substituting into (6), we arrive at

B o o 1
uw(B(C,1)NT) < F52K2jz=;2 * < ﬁaE-

This is at most € for K large enough. |
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