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1. I n t r o d u c t i o n  

Numerous results deal with the smoothness properties of convex continuous 

functions or, more generally, of locally Lipschitz functions on Banach spaces. 

A theorem of Mazur says that  every convex continuous function on a separable 

Banach space is G&teaux differentiable on a dense G,-set.  If  we confine ourselves 

to Banach spaces with a separable dual, any convex continuous function is even 

Fr@chet differentiable on a dense G,-set.  

A natural  question is whether the set of points of differentiability has to be large 

also in a sense of measure. In a finite dimension, the answer is positive; a classical 

theorem of Rademacher says that  any locally Lipschitz function on ll~ '~ is Fr6chet 

differentiable almost everywhere. In infinite-dimensional Banach spaces, there 

is no measure analogous to the Lebesgue measure on ~ n  and also no canonical 

notion of a null set analogous to the family of sets of Lebesgue measure zero in 

R n. One possible notion of a null set in infinite-dimensional Banach spaces was 

defined by Aronszajn [Aro76]. He proved that  every locally Lipschitz function on 

a separable Banach space is Ggteaux differentiable everywhere except for such a 

null set. However, this is not the case for the Fr@chet differentiability. Preiss and 

Tiger [PT95] even showed that  on every separable infinite-dimensional Banach 

space, a Lipschitz function f exists such that  the set of points where f is Fr@chet 

differentiable is Aronszajn null. 

In this paper, we establish an analogous result for convex  con t inuous  functions 

on the separable Hilbert space/?2- In fact, we prove that  there is an equivalent 

norm p on /?2 such that  the set of points where p is Fr@chet differentiable is 

Aronszajn null (Aronszajn null sets are defined in Section 2). To do so, we 

modify a method of Preiss and Zajf~ek [PZ84] and combine it with a result on 

finite-dimensional coverings by unit balls inspired by a ball covering construction 

of Rogers [Rog57]. 

Having read a preliminary version of this manuscript and employing some of its 

ideas, David Preiss came up with a much simpler proof. His main new insight is 

that  instead of proving the relatively complicated finite-dimensional ball covering 

result, one can do a simple inductive construction directly in the Hilbert space. 

In the interest of the readers and with Preiss' permission, we reproduce his proof 

in an appendix. The original proof is included as well, since we find the finite- 

dimensional problem of some independent interest and since the techniques could 

perhaps be useful in other situations. 

Borwein and Noll conjecture in [BN94] that  the set of points where a convex 

continuous function on /?2 is Lipschitz smooth is never Aronszajn null. Our 
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result shows tha t  this is not  the case, since Lipschitz smoothness implies Fr6chet 

differentiability. 

2. N o t a t i o n  a n d  p r e l i m i n a r i e s  

Let X be a Banach space. We let B x  (x, r) denote the closed ball in X with center 

x and radius r; the subscript X will be often omit ted where clear from the context.  

For a set C C X,  we write B(C, r) = [-Jxec B(x,  r) for the r -ne ighborhood of C. 

Let X be a Banach space and let f :  X --+ R be a function. A continuous linear 

map  f ' ( x ) :  X --+ I~ is a G ~ t e a u x  d e r i v a t i v e  of f at  a point x E X if 

f ( x  + th) - f ( x )  
f ' (x ) (h)  = lim 

t ~ 0  t 

for every h E X.  If, moreover, the above limit is uniform for Ilhll < 1, then i f (x)  

is the F r 6 c h e t  d e r i v a t i v e  of f at x. 

NEGLIGIBLE SETS. There is no nontrivial translation-invariant Borel measure in 

infinite-dimensional Banach spaces. Several authors  have defined various classes 

of "null sets" in infinite-dimensional Banach spaces, t rying to mimic the basic 

properties of Lebesgue null sets in IR n (a countable union of null sets is null; a 

t ranslate  and a subset of a null set is null; no nonempty  open set is null; each 

class restricted to R n gives the null sets for the n-dimensional Lebesgue measure).  

Such classes of null sets are not necessarily induced by a single measure on the 

considered space. 

The following notion of a null set was introduced by Aronszajn  [Aro76]. 

Definition 2.1: Let X be a separable Banach space and let A be a subset of X.  

X ¢x~ The set A is called A r o n s z a j n  nu l l  if for every sequence ( i)i=l in X whose 

A closed linear span is X there exist Borel sets Ai C X such tha t  A C [.-Ji=l i and 

the intersection of Ai with any line in the direction xi has the one-dimensional 

Lebesgue measure zero, for each i c N. 

As an easy consequence of Fubini 's theorem, the following can be shown (see 

[Aro76], Proposi t ion  1): If n C N and A is a Borel subset of X such tha t  the 

intersection of A with any n-dimensional affine subspace of X is of n-dimensionai  

measure zero, then A is Aronszajn null. We will also need the following straight- 

forward modification. 

LEMMA 2.2: Let X be a separable Banach space, let A c X be a Borel set, 

and let Y be a closed subspace of X of a finite codimension. Let n E N be such 

that the intersection of A with any n-dimensional af/ine subspace of X parallel 

to Y is of n-dimensional measure zero. Then A is Aronszajn nuI1. 
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Proof." Let k E N be the codimension of Y. Let Z be an (n + k)-dimensional 

subspace of X. Then Z = Z1 @ Z2, where Z1 is an n-dimensional subspace of 

Y and Z2 is a subspace of X.  Let x E X be given. All n-dimensional slices of 

A M (Z + x) parallel to Z1 are of n-dimensional Lebesgue measure zero, hence 

A M (Z + x) is of (n + k)-dimensional Lebesgue measure zero by ~ b i n i ' s  theorem. 

The set A is Aronszajn null by the remark above the Lemma. I 

HILBERT SPACE. Let g2 denote the separable Hilbert space and let (el, e2 , . . . )  

be its orthonormal basis. We identify the Euclidean space I~ n with the linear 

span of {e l , e2 , . . .  ,en} in g2. For a point x in R '~ or in g2, []x[[ = (Eix2) 1/2 
denotes the Euclidean norm. For a point x = (Xl, x2, x3 , . . . )  = ~ xiei, we will 

q e oo write x[p..q] = ~i=p Xi i, and x[p. . . ]  = ~i=v  xiei- 

GEOMETRIC CONSIDERATIONS. Let V~(r) denote the volume of the n- 

dimensional ball of radius r. A well-known formula says 

7rn/2 
V~(r) r(n/2 + 1) r '" 

We will need the following simple (and rough) corollary: 

LEMMA 2.3: For natural numbers m and n, m < n, we have V~_m(1) <_ 

nmY~(1). 
We also need a standard estimate on the number of grid points in a set 

depending on the volume of a suitable neighborhood. 

LEMMA 2.4: Let X C II( ~ be a bounded set, and let Z '~ denote the grid of 

integer points in R ~ . Then we have 

IX n Z~t < ~ (B(X ,  4~ /2) )  

and also 
IB(X,x /n /2)  n Z  n } > £~'(X). 

Proof: To each grid point g E Z '~, assign the axis-parallel unit cube centered 

at g. For any g E X,  this cube is completely contained in B(X,  v/-~/2) and this 

gives the first inequality. On the other hand, if the cube of some g intersects X 

then g E B(X ,  x/~/2), and this gives the second inequality. I 

PROBABILITY THEORY RESULTS. In probability estimates, we will mostly follow 

the rule "whenever you see an expression 1 - x (with x small), est imate 1 - x ~_ 

e-~.  '' We also need a tail estimate for the probability that  at least a events 

among m very rare independent events occur: 
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LEMMA 2.5 (Poisson approximation to binomial distribution): Let 

X1, X 2 , . . . ,  Xm be mutually independent random variables, each attaining value 

1 with probability p and value 0 with probability 1 - p, where rnp < 1. Let a > 1 

be a parameter. Then 

] Prob Xi >_ a < (emp) a. 

Proof sketch: This follows easily, e.g., from Theorem A.12 in Alon and Spencer 

[AS93]. In our situation, that  Theorem says that the probability we are consid- 

ering is below [et3-t/3-fi] pm with/3 = a/pm. Using e fi-1 _< e fl and 1/a <_ 1 gives 

the form in Lemma 2.5. | 

Next, we recall the so-called Lov£sz Local Lemma about events with a bounded 

dependence (see [AS93] for a proof): 

LEMMA 2.6 (Lov~sz Local Lemma): Let A 1 , A 2 , . . . , A n  be events in some 

probability space. For each i -- 1, 2 , . . . ,  n, let D(i) be a set of indices such that 

the event A~ is independent of all the events Aj with j C {1, 2 , . . . ,  n} \ D(i) 

(note that i E D(i)).  Suppose that numbers x t~x2 , . . .  ,xn E (0, 1) exist such 

that 

Prob[A,] < xi 1-I (1 - xj)  
jeD(i) 

holds for all i = 1 , 2 , . . . , n .  Then the probability that none of the events 

A1, A2, , A ,  occurs is strictly positive (in symbols, Prob [Ai=l i] > 0). 

We will use the following consequence. 

COROLLARY 2.7: Let the events Ai and the sets D(i) be as in Lemma 2.6, and 

suppose that 

Prob[Aj] <_ 1/2e 
jcD(i) 

n 
holds for each Then we can conclude Prob [A =I > 0. 

1 for all i, and so the Proof: Put  xi = eProb JAil. We have, in particular, xi < 

inequality 1 - x i  >_ e -2~  holds (elementary calculus). Hence YIjeD(i)(1 - x j )  > 

exp ( - 2  ~jeJg(~)xj)  k e -1, and we can use Lemma 2.6. | 
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3. C o n v e x  f u n c t i o n s  a n d  cove r ings  

Let f be a convex continuous function on g2, and let D be the set of points where 

f is Frdchet differentiable. Our original aim was to find f so that  the complement 

of D is not Haar null. (The class of Haar null sets [Chr74] is bigger than the 

class of Aronszajn null sets, hence it is, of course, "easier" to find f with g2 \ D 

not Haar  null than to find f with D Haar null, and this is "easier" than to find 

f with D Aronszajn null.) 

If  we considered functions defined on a nonreflexive Banach space instead of on 

g2, we could get such an example as follows. According to [MS96], there exists 

a closed convex set K C X with empty interior which is not Haar  null. The 

function f on X defined as the distance from K is convex and continuous, and 

it is Fr~chet differentiable at no point of K. However, we want to construct an 

example on the separable Hilbert space, and each closed convex set in g2 with 

empty interior is Haar null [Mat97], [Mat]. (Let us remark that  this result holds 

also in a considerably more general setting.) Therefore, we cannot simply use a 

distance function of a convex set and we have to proceed differently. 

Our approach is based on suitable low-density 1backings of unit balls. Suppose 

5 r is a collection of balls of radius 1 in g2 such that  U $- is dense in g2. Put  

N = ~2 \ ( U ~ F  n B(O,5))  . 

Let C be the closed convex hull of the set {(y, t) E N × ~: t > IiyH2}. As observed 

by Preiss and Zajihek [PZ84], the function f ( x )  = inf{t E ~: (x,t)  E C} is a 

well-defined convex continuous function on 62, and it is not Fr~chet differentiable 

at any point of B(0, 3) \ U ~'- The latter can be proved by showing that  the 

subdifferential Of  has oscillation 1 at each point of B(0, 3) \ U bY (we will recall 

the definition of the subdifferential in Section 5). 

How to ensure that  the complement of L J9 v is large? First, we present a 

heuristic consideration which doesn't  quite work but might perhaps be helpful 

for understanding the actual proof. 

Let B be a covering of R ~ by unit balls (that is, B is a set of unit balls in II~ n 

with U/~ = R~). The u p p e r  d e n s i t y  of B, denoted by d(B), is defined by 

d(B) = lim sup ~SeB:  BcB(O,R) A'~(B), 
 n(B(0, R)) 

where A n denotes the n-dimensional Lebesgue measure. Rogers [Rog57] estab- 

lished the existence of coverings with a relatively small upper density. Namely, 

he proved the existence of a covering B~ of R n b y  unit balls such that  

-a( Bn ) <_ n ln n + n l n l n n  + 5n. 
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Let Z,~ denote the set of centers of the balls in such a covering Bn. Set rn = 

1 + 1 / v ~  , and put  C~ = r n Z  n. Hence C~ determines a low-density covering of 

]Rn by balls of radius rn. At the same time, setting ~-, = {B(c, 1): c E Ca}, one 

can calculate tha t  the upper  density of 5 ,  decreases to 0 very quickly as n --4 oo 

(it is roughly of the order e-~/~). If we now identify R" with the linear span of 

{el, e 2 , . . . ,  en} in 62 and define ~" = {Be2 (c, 1): c c C~, n E N}, then clearly U 9c 

is dense in 62. Since the density of the coverings 5Cn decreases to 0 (this means 

tha t  the fraction of the volume of R" covered by the bails of radius 1 centered 

in C ,  decreases to zero with the dimension), we can hope tha t  there will be still 

"enough" space in g2 left after removing all the balls in ~-. This is roughly how 

the proof  of Theorem 3.1 below goes, but  instead of the result of Rogers we use 

Lemma 3.3 below and choose the increasing sequence of subspaces of 62 more 

carefully. 

THEOREM 3.1: There exists a convex continuous function f on the separable 

Hilbert space such that the set of points where f is Frdchet ditferentiable is 

Aronszajn null. 

In Section 5 we show tha t  f can even be an equivalent norm. 

In order to control the measure properties of sets, we will use 12-dimensional 

t e s t  cubes* .  We let U0 be the unit cube [0, 1] 12. Since we consider each R n 

canonically embedded in 62, U0 is also a subset of 62. By a test cube, we mean 

any congruent  copy U of U0 in 62. In other words, if x0 C 62 is a t ranslat ion 

vector and u -- (Ux, u 2 , . . . ,  u12) is a 12-tuple of or thonormal  vectors in 62, we set 

U =  Xo+ aiui:O<<_ai <_ l , i=  l , 2 , . . . , 1 2  . 
i=1 

We denote  the 12-dimensional Lebesgue measure on U by ~u. Theorem 3.1 is a 

consequence of the following: 

PROPOSITION 3.2: Let e > 0 be given. There exist a number  r > 0 and a 

countable set C C 62 such that 

(A) for any 5 > O, B(C, r + 5) = 62, and 

(B) Au(U N B(C, r)) <_ e for any test cube U. 

Why just 12-dimensional? This is the smallest dimension where certain technical 
calculation goes through. With some more effort, the proofs could be made to 
work also with a somewhat smaller dimension as well, but, interestingly enough, 
it seems that the current proof method cannot work for a cube of dimension 
smaller than 3. 
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Proof of Theorem 3.1: For each m 6 N, apply Proposition 3.2 with e -- l / m ,  

obtaining rm > 0 and a set Gin.  Put F = Nm~__l B(C,~, rm). To see that  F 

is Aronszajn null, it is enough to show that  the intersection of F with any 12- 

dimensional affine subspace Z of 62 has 12-dimensional Lebesgue measure zero. 

The space Z can be covered by countably many 12odimensional test cubes. If 

U is any such cube and m 6 N then Au(U N B(Cm,rm))  <_ 1/m; consequently 

 u(v n F) -- o. 

By a result of Preiss and Zajf~ek [PZ84], there exists a convex, continuous 

function f defined on 62 such that  f is Fr4chet differentiable only at points of 

F.  (Construct countably many functions fm similarly as was described in the 

beginning of this section, and put f = ~--~m~_l am fro, where the am > 0 are 

sufficiently small.) I 

We are going to prove Proposition 3.2 from a somewhat technical Lemma 3.3 

below on ball coverings in R n. As was mentioned in the introduction, there is 

a much simpler and direct proof due to Preiss. Readers interested (naturally 

enough) in this simplified proof may read the appendix and skip the rest of this 

section and the next section. 

Let K be some (yet unspecified) large natural  number. This t ime we will use 

K- t imes  enlarged test cubes. So we let To = [0, K] 12, and for a vector x0 6 62 

and an orthonormal family u = (ul, u2 , . . . ,  u12) in 62, we put 

T = T ( x o , u ) =  xo+  aiui:O<_ai < _ K , i = 1 , 2 , . . . , 1 2  . 
i = l  

We let affT denote the affine span of T in g2, that  is, 

affT = xo  ~- ol iui:  ol i E • . 

i=1 

Let # = ~T be the uniform probability measure on T (obtained by re-scaling the 

12-dimensional Lebesgue measure). 

Let v 6 62 be a p o i n t .  We say that  v is o f  t y p e  j w i t h  r e s p e c t  t o  T if 

dist(v, T) _< 1 and the distance of v from affT is at least 1 - 2 - j + l  and at most 

1 - 2 - j .  (The type of a point v essentially determines how large a part  of T does 

a unit ball centered at v cover.) Now we are ready to formulate the key lemma. 

LEMMA 3.3: Let a number Ko be given. Then we can choose numbers K = 

K(Ko)  >_ Ko and no = no(Ko) so that for any natural number ~ >_ no, a natural 

number  n = n(£) > £ and a countable set C = C(n) c R '~ exist with the following 

properties: 
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(i) We have BR~ (C, 1 + ~) = R '~, where ~ = 5(n) ~_ 0 is a function of  n tending 

to 0 wi th  n --+ oo. 

(ii) Le t  T ---- T(xo,  u) be any congruent copy of  the cube To in ~2. We let C T'j 

denote  the set  o f  all points  c E C tha t  are of  type  j with respect  to T.  

Then  we have, for any T and any j ,  

( ) 1  
# r  T N B t ~ ( C  r J , 1 )  _< K424 j .  

(iii) The  distance of  C from the subspace o f R  n spanned  by the first f coordinate 

axes is at  least 1, that  is, IIc[t + 1..n]ll _> 1 for each c = (e1 ,c2 , . . .  ,c,~) e C. 

Figure  1. I l lus t ra t ion to the s t a t ement  of L e m m a  3.3. 

Figure  1 i l lustrates the  s i tuat ion the L e m m a  talks about ;  for obvious reasons, 

we had  to  reduce the dimensions somewhat ,  and so 12 is p ic tured 3-dimensional,  

n = 2, g -- 1 and T is shown 2-dimensional.  L e m m a  3.3 will be  proved in 

Section 4. 

Proo f  o f  Prcposi t ion 3.2: Let E > 0 be given, and let us set Ko = max{1/~ ,  106}. 

Let  K > K0 and no be as in L e m m a  3.3. We will show tha t  there  exists  a subset  

C '  of g2 so t h a t  
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(A') for any (~ > 0, B(C, 1 + 6) =/?2, and 

(B') #T(T N B(C, 1)) _< ~ for any congruent copy T of To. 

Once we prove this, the Proposi t ion is obtained by put t ing r = 1/K and C = 

(1/K)C'.  
For k = 1, 2 , . . . ,  put  nk = n(nk-1), where n(/?) is the function as in Lemma 3.3. 

Let  Ck = C(nk) C IR nk C /?2 and 6k = 6(nk) be as in Lemma 3.3. We put  

C '  = Uk--1 Ck" 
The  condit ion (A') is straightforward to check. Consider any point  x = 

(Xl ,X2, . . . )  C/?2 and an arbitrari ly small number  7 > 0. Let  k be large enough 

so tha t  6k _< 3`/2 and IIx[nk + 1...]11 -< 3'/2. Then,  by Lemma 3.3(i), there exists 

a point  c E Ck with IIc - x[1..nk]ll <_ 1 + 3`/2 and we get IIc - xll < 1 + 3'. 

To verify condit ion (B') , . let  T = T(x0, u) be a congruent copy of the cube To. 

For j = 1, 2 , . . . ,  let Ij be the set of all the indices k > 1 such tha t  Ck contains 

at  least one point  of type  j with respect to T. We claim tha t  IIjl < K322j. 

We may assume Ij 7~ 9. We let m = min Ij .  Since all points of Cm lie in 

the subspace spanned by the first nm coordinates and some point  of Cm lies at  

distance at  most  1 from T, we have [[xl[n m q- 1...]1[ < 1 for some point x 1 E T, 

and consequently 

(1) I[x0[nm + 1 .... ][[<_][x l[nm+l . . . ] [[+diam(T)<_l+v/ -~g<4K.  

Next,  consider an index k E I j .  Let c C Ck be such that  dis t (T,c)  _< 1 and 

dist(affT, c) <_ 1 - 2 - J .  Let  x C affT be the point at taining the distance of affT to 

this c. We have [[x-c[[ <__ 1 - 2 - J  and also d is t (T,x)  _< [[x-cll+dist(c,T ) _< 2. We 
12 can write x = x0+}-':~i=l biui for some numbers bl , . . . ,  b12 with Ibi[ <_ K + 2  < 2K.  

By L e m m a  3.3(iii), we have Ilc[nk-1 + 1..nk]ll _> 1, and hence 

Hx[nk-1 + 1..nklll >__ [Ic[nk-1 + 1..nk][l - II(c- x)[nk-1 + 1..nk]l[ 

_> 1- -  (1 - -  2 - j )  = 2 - j .  

Therefore,  at  least one of the following inequalities holds: 

(2) [Ix0[nk-1 + 1..nk][I _> 1 .  2-J  

or, for some i E {1, 2 , . . . ,  12}, 

1 . 1 . 2 _ j .  
(3) [[ui[nk-1 + 1..nk][[ > 2K  13 

Let  J0 C_ I j  be the set of those indices k ¢ m for which (2) holds, and let Ji C Ij  

be the set of indices k ¢ m for which (3) holds with i, i = 1, 2 , . . . ,  12. There  
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exists an i0 E {0, 1 , . . . ,  12} with IJioI _> ( i / j ] -  1)/13 (pigeonhole). First ,  we 

consider the case i0 -- 0. Then  we have, by (1), by the theorem of Py thagoras ,  

and by (2), 

(4K)  2 > Ilx0[nm + 1 .]112 > ~ IIx0[nk_l + 1..nk]ll 2 > ]Ijl - 1 1 . 2_2j 
- " "  - - 13 13 2 

kElo 

and IIjl < 16K 2 • 13 3 • 2 2j + 1 < 22JK 3 follows. A similar calculation works in 

the case i0 E {1, 2 , . . . ,  12}, using the unit  vector ui. 

Using L e m m a  3.3(ii), we can now calculate 

#T(TMB(C' , I ) )  < E # T  TNB(Ck,1)  < E E t Z T  TMB(C['J,1)  
k=l  k=l  j--~l 

( 1 
= E # T  TAB(CT'J,1)  <~-"~l/jlKg-24 j 

j = l  kEI j  j = l  
c,o 

< S E  2_2 j  e 
- 3 

j = l  

Propos i t ion  3.2 is proved. I 

4. P r o o f  o f  L e m m a  3.3 

In the  proof,  we assume tha t  K = K(Ko) is a large enough na tura l  number  (just 

how large can in principle be determined by an inspection of the calculat ions 

below), and tha t  no is still much larger than  K.  The  dimension g > no is given, 

and  n = n(e) is chosen large enough in te rms  of l (e.g., n --- ~3 will work). We 

th ink  of g and n as tending to infinity, while K is very large but  fixed. We set 

5 = 5(n) = 4 / V ~ .  

To const ruct  the set C,  we set  L = K 2, we choose a sui table finite set D C 

[0, L) ~, and  we replicate D periodically with period L along each axis; in other  

words, we set C = D+LZ n . Since we need to replicate also other  sets periodical ly 

in this manner ,  let us write X # = X + L Z  ~ for an a rb i t r a ry  set  X _C ll~ '~ (so t ha t  

C = D#). 
Let us set r~ = l /n,  and let Go be the points  of the grid with spacing 77 within 

the cube  [0, L) '~, t ha t  is, Go = ~Z n M [0, L) ~. The  set D will be  chosen as a 

sui table  subset  of Go. In order to satisfy condition (iii) of the l emma  (distance of 

C from the subspace spanned by the  first ~ basis vectors),  we define the "forbidden 

region" 

F = {x E R'~: IIz[~-t- 1..nil I < 1} 
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and we set G = Go \ F #.  

Let p E (0, 1) be a real parameter;  its value will be fixed later. Let D C G 

be a random* subset of G, where we include each point x E G into D with 

probabil i ty p, this choice being mutual ly  independent  for distinct points x. From 

such a r andom D we construct  the set C = D # as above. We will show tha t  *~he 

probabil i ty of obtaining a set C -- D # satisfying the properties required in the 

Lemma is nonzero, and consequently the required C exists. Note tha t  condit ion 

(iii) of the L e m m a  will be automat ical ly  satisfied for any C = D #,  with D C G. 

A two-dimensional picture, with t? = 1 and n = 2, can perhaps be slightly helpful 

(a l though it is misleading too); see Figure 2. 
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F # 

cEC 

X l  

Figure 2. A 2-dimensional illustration to the proof of Lemma 3.3. 

For each x E Go, let A~ denote the event "x ~ B(C, 1 + 3/2)" .  Since each 

point  x E [0, L) ~ lies at distance at most  r / v ~  < 5/2 from some point of Go, if 

none of the events As for x E Go occurs then B(C, 1 + 5) = Nt n and condit ion (i) 

holds. 

Let us est imate the probabili ty of the event At .  A given point x E Go is 

covered by B(C, 1 + 5/2) if and only if some point of the set B(x, 1 + 5/2) M r/Z n 

falls into C. There  is a slight complication since the grid points in the forbidden 

2 G * The underlying finite probability space is (2a,2 ,Prob), where for each atom 
D C G we have Prob(D) = plDl(1 - - p ) l a " - D I  
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region F # are not chosen into D. The probability of x not being covered by 

B(C, 1 + 5/2) is thus Prob [Ax] = (1 - p ) " ,  where 

= IB(x, 1 +  12) n a #  I 

A simple calculation, which we postpone, gives the following: 

CLAIM 4.1: For any x C Go, we have 

Wn( lq -4n -1 /2 )  
llx > l] = 

(recall that Vn (r) denotes the volume of the n-dimensional ball of radius r). 

Let us put p = (2nlnn)/L,.  We show that  for this setting, there is a fairly 

small probabili ty that  any of the events Ax occurs. We have 

Prob ]some Ax occurs] < ~ Prob [A~ l < la0l(1- p)" <_ ( a / , ) n e x p ( - p ~ )  
xCGo 

G exp(n lnL  + n l n n  - 2n l n n ) =  (L /n)  n. 

The last expression quickly tends to 0 for n --+ c¢, and so we can assume 

1 
(4) ~ Prob [Ax] < 

- 1 0 0 '  xcGo 

say. Hence for the given choice of p, the covering condition (i) in Lemma 3.3 is 

typically satisfied. 

Next, we are going to deal with condition (ii) (sparse covering of all the 12- 

dimensional cubes T). First we note that  although the Lemma considers all cubes 

T in ~2, we may restrict ourselves to cubes T C IRe, where we write ~ = n + 13. 

This is because if T C ~2 is an arbi trary 12-dimensional cube, there exists an 

isometry of the linear span of T U N n onto IR e fixing IR =. 

For a given congruent copy T of To, we now estimate the probabili ty tha t  our 

random set C = D # contains many points that  are close to T. This amounts to 

a volume computat ion plus an application of a large deviation tail est imate for 

the binomial distribution. 

CLAIM 4.2: For any congruent copy T of To and any real number p E (0, ½], we 

have 

Prob[ l{x E C: dist(x, affT) _< 1 -  p/2 and dis t (x ,T)  _< 2}] > Kp-2]  

< e x p ( -  K n / l O p ) .  
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This claim, whose proof we again postpone, allows us to estimate the prob- 

ability that  a given fraction of some fixed cube T is covered by the unit balls 

centered at points of C that are of type j (because we can estimate the area 

covered by one such ball). But we need to handle all possible T's at the same 

time. Similarly as we did for the covering property (i), we replace the set of all 

T 's  by a suitable discrete approximation. This time we need one family Tj of 

cubes for each j ,  and also we need a bit more sophisticated choice of these cubes 

than just taking translates and rotations in a sufficiently fine grid. 

For a given j ,  set p = 2 - j ,  and let N be a p/4-net in the large cube [0, L) a 

(recall that  ~ -- n + 13). That  is, N is an inclusion-maximal subset of [0, L) ~ 

such that  every two points of N have distance at least p/4.  Further let M be a 

set of orthonormal families as in the following Claim (whose proof is, as usual, 

postponed): 

CLAIM 4.3: Let  p E (0, 1). There exists a set M consisting of  orthonormal 

12-tuples v = ( v l , . . . ,  v12) in ~¢~such that given any orthonormal family  u = 

(Ul,U2,. . .  ,u12 ) in R ~, there is a v E M with [[vi - zill <_ P~ K2 for all i -- 

1, 2 , . . . ,  12, and moreover we have 

/ ~ 12~ IML <_ (K3/p) 

We define Tj = {T(x0, v): x0 E N, v E M}. It will be notationally convenient 

to assume that  the families Tj are all disjoint. For a T E Tj, let AT be the event 

"for more than K p  -2 points x of C, both dist(x, affT) <:_ 1 - p/2  

and dist(x, T) _< 2 holds, where p -- 2-J".  

To establish Lemma 3.3, it is sufficient to prove the following two claims: 

CLAIM 4.4: I f  the set D is chosen at random in the above-described manner,  

then with a posit ive probability, none of  the events Ax for x E Go (grid points  

uncovered) and AT  for T E Tj, j = 1 ,2 , . . . ,  occurs. 

CLAIM 4.5: I f  none of  the events AT  occurs, T E Tj, j = 1 ,2 , . . . ,  then the 

condition (ii) in L e m m a  3.3 is satisfied. 

Before proving these Claims, we formulate a simple geometric statement (whose 

proof is omitted). This is the only point in the proof where the dimension of T 

really plays a role. 

CLAIM 4.6: Let  T be a congruent copy of  To and x E ~2 be a point  at distance 

at least 1 - p /2  from affT. Then B ( x ,  1) M affT is contained in a 12-dimensional 
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ball of  radius at  most v~, whose Lebesgue measure is thus at most/3p 6, where 

/3 is an abso]ute constant. 

P r o o f  of  Claim 4.5: Let T be a congruent  copy of To. As was remarked above, 

it suffices to consider the case T C ]R n, ~ = n + 13. Also, since C is L-periodic,  

we can assume tha t  T = T(x, u) with x C [0, L) n. Again write p = 2-J .  By the 

choice of Tj, we can find a T1 C ~ such that  if y E affT and d is t (y ,T)  < 1 then 

there is a z E affT1 with dist(z, T1) < 1 such tha t  Ily - zll < p/2. Therefore, if 

c E C is any point  of type j with respect to T then dist(c, affT1) < 1 - p/2 and 

dist(c, T1) < 2. 

Since we suppose tha t  the event AT1 doesn ' t  occur, there are at most  Kp -2 

such points c. By Claim 4.6, the unit ball around each such point  c swallows no 

more than  ~p6 of the Lebesgue measure sitting on affT. Hence 

~p~ K p4 
,T (T n B(C 1)) < y <-- 

if K is large enough. This establishes Claim 4.5. I 

Proof of Claim 4.2: Put  r = 1 - p/2. Let m denote the number  of points of the 

grid G # tha t  are at distance at most  r from affT and distance at most  2 from T. 

Since the diameter  of T is x/~2K and the period of G # is L = K ~ > diam(T) + 4, 

no two of these points are a periodic replication of the same point  in G. Hence 

the number  of the relevant points in C is the sum of m independent  random 

variables, each of them at ta ining value 1 with probabili ty p and value 0 with 

probabil i ty 1 - p. By Lemma 2.5, the probabili ty we seek is at most  (epm) I¢/p2 ; 
it remains to es t imate  m. 

Recall tha t  we assume T = T(xo, u) C IR '~. The number  m is no bigger than  

the number  of points of the grid rl Z~ in B(T, 2)N B(affT, r), with r = 1 -  p/2 and 

the balls being in the ~-dimensional space. Let Y be the or thogonal  complement  

of u in R n. Then  B(T, 2) M B(affT, r) is contained in the set 

Z = {x + y: x • affT N B(xo, 4K),  y • Y, [[y[[ < r}. 

This is a Cartesian produc t  of an ( n +  1)-dimensional r-ball  and a 12-dimensional 

ball of radius 4K. By the first inequality in Lemma 2.4, we get 

V,2(hK)V +, (r + 
m <  < - -  ~ ? ~  - -  ~ r ~  

We have V12(5K) < (10K) 12, and we also get 
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By substituting p = 2nlnn/v, with v --- V~ (1 + 4n-1/2)  r/-n as in Claim 4.1, we 

get 

pm < 
(2nlnn) .~ n (10K)12Vn (1 - ! p  2 + n - l /2 )  

Vn (1 + -~n-1/2) ?~n+13 

(5) < 2n14(lOK)121nn ( 1 -  ½P+ n-1/2"~ n 
- i ] 

We have 2nla(10K) 12 Inn < n 15. We distinguish two cases depending on the 

value p. For p > n -1/2, we get 

pm<nlg ( l+n_X/2p /2~n  n 1 5 (  p )n 
_ 1-~-~-q-/~- ) < 1 -  2(1 + ~n-1/2) 

< n15(1 - p/4) n < n'Sexp(-n./4) 

<_ exp(-np/8) 

(recall that  n is large and pn > V~). For p < n -1/2, we ignore the ! p  term in 

(5) and we calculate 

p?TL < n 15 ~ 1-'I- ~--1/2 ~ n 15 
_ \1+4n_1/2] <_ 1 1-~n_, /2)  

1 _ 1 / 2 " ~  n < n 15 (1 -- ~n  } < n15exp(-v/-n/4) 

< exp( -x /n /5 ) .  

In both cases, simple estimates lead to (epm) K/p~ < exp(-Kn/(lOp)). Claim 4.2 

is proved. II 

Proof of Claim 4.4: In order to show that the probability of none of the events 

A,  and AT occurring is nonzero, we want to apply the LovLsz Local Lemma in 

the form of Corollary 2.7. 

First we note that  although the number of the events AT is formally infinite 

(j  can be any natural number), all but finitely many of them are impossible. 

Namely, the event AT requires in particular that [C] > Kp -2 with p = 2 - j .  

Since no two points of C interacting with T can be periodic replications of the 

same point of D, we also have [D[ _> Kp -2. Since [D[ < IG[ is bounded by some 

function of n, AT is impossible for j too large. 

For each of the events Az and AT, we need to find all other events it might 

possibly depend on and sum up their probabilities. We need not care about the 
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dependence on the events Ax, since we have calculated in (4) that  all these events 
1 together have probability at most ~ .  

Let us consider an event Ax, and let us look which events AT may possibly 

affect A~. Clearly, if A~ is not independent of AT then there must be a point 

y E G such that  tile event "y E D" influences both A~ and AT. If A~ should 

depend on "y E D" then some periodic copy Yl E y + LZ n of y must lie in 

B(x, 1 + 5/2) C B(x,2). Similarly, "y E D" interacting with AT means that  

some Y2 E y + LZ n lies in B(T, 2) C B(x0 ,4K)  where T = T(xo, u). Put t ing this 

together yields that  x0 E B(x, 5K) # = B(x, 5K) + LZ n for any T = T(xo, u) 

with AT affecting Ax. 
We recall that  the set Tj was defined as {T(x0, v): x0 E N , v  E M}, where N 

is a p/4-net  in [0, L) 7~, p = 2 - j ,  and M is as in Claim 4.3. By a standard volume 

argument,  we get that  the number of points of N in any ball of radius 5K is at 

most 

v ~ ( p / s )  - 

Moreover, since L > diam(B(x,  5K)), at most 3 n periodic copies of B(x, 5K) in 

B(x, 5K) # may intersect the cube [0, L) e. Therefore, the number of events AT 
with T C Tj that  may possibly influence As is bounded by 

3 n (5@K-)fi [M[ _< (g )  bn 

for an absolute constant b. Using Claim 4.2, we get that the sum of probabilities 

of these AT'S is bounded by 

( @ )  bn exp ( - - l ~ p ) = e x p ( - n [ l @ p - - b l n ( K / P ) ] ) .  

If K is large, the expression in the exponent is at most -Kn/(2Op) = -Kn2J/20. 
By summing over all j = 1, 2 , . . . ,  we conclude that  the sum of the probabilities 

of all events that  may possibly influence our event A~ is small (smaller than any 

prescribed constant). A similar reasoning gives the same estimate for the events 

some AT may depend on. Claim 4.4 thus follows from Corollary 2.7. I 

Remark: It  seems that  sum of the probabilities of all the events AT together 

(not only of those that  some other among our events depends on) cannot be 

bounded. The reason is that  we need too many events AT. Namely, for  j being 

a small constant,  the probability Prob [AT] with T E Tj can only be bounded by 

a function e x p ( - a n )  for some positive constant a ,  but the number of points of a 
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2 - J - L n e t  in the cube [0, L]" grows superexponentially with n (because the ratio 

of the volume of a cube and its inscribed ball grows superexponentially with the 

dimension). Somewhat ironically, this is the only reason for applying the Lovgsz 

Local Lemma (instead of simply summing up the probabilities). This, in turn, 

forces us to choose the points of D from a discrete set by independent trials 

(instead of the perhaps more natural way of choosing D as u independent points 

uniformly distributed in [0, L)n). 

Proof of C/aim 4.1: First, we count the points of the full grid Go # = tin n falling 

into B(x, 1 + 5/2). By the second inequality in Lemma 2.4, this number is at 

least Vn(1 + 5/2 - r]v~/2)/r]  n = V~(1 + ~n , ,  . 

Next, we estimate the number of points in r]Z ~ N B(x, 1 + 5/2) falling into the 

forbidden region F #. The region F # consists of translated copies of the cylinder 

F = {y • Nn: Ily[g + 1..n]l I < 1}, and the ball B(x, 1 + 5 / 2 )  may only intersect 

one of these copies; so we may as well assume it intersects F itself. We have 

B(x, 1 + 5/2) 7 /F  C_ {z • ]Re: [Iz - xl] < 1 + 6/2} x {z' • ]Rn-e: IIz'll < 1}. 

(Here we consider ]R,-e as the span of ee+ l , . . . ,  en.) If this last region is denoted 

by R, the number of points of the grid r/Z" in R is no more than the volume 

of the lr]v~-neighborhood of R, by Lemma 2.4. The volume of B(R, rive) is 

bounded by 

V~(1 + 3n-1/2)Vn_e(1 + n--l/2). 
Using Lemma 2.3, one can check that if n is large enough in terms of g (n = 6 3 will 

3~--1/2] do), then the last displayed expression is smaller than ½Vn(1 + 3.° , (say). 
1Vn(1 + 3 n - 1 / 2 ~ / l ] n  _ 4n-1/2~/?)n Therefore, ux > 7 ~ , > Vn(1 + 5 , . This finishes the 

proof of Claim 4.1 and thus also of Lemma 3.3. | 

Proof of Claim 4.3: In the Claim, we have used the maximum metric for mea- 

suring the distance of two 12-tuples. For the proof of the Claim, it will be 

more convenient to use the Euclidean metric, that is, we consider the metric 

space U of all orthonormal 12-tuples u in IR n with metric given by dist(u, u ')  = 
(12 )1/2. 

E i = I  I1 ui - -  U{H 2 This metric space can be isometrically identified (as a 

subset of the g2-sum of 12 copies of R e) with a subset of IR12~; it even lies in 

the ball B(0, x /~ )  C B(0,4) in ]R12~. We choose M as a pl-net in U, with 

Pl : P~ K2" In IR 12'~, the balls of radius pl/2 around the points of M are disjoint 

and they are also contained in the ball B(0, 5), say, and so we get 

V12~ (5) < (1Og2)12n  ( ~ )  12~ 

I M I  _< V ~ 2 . ( p ~ / 2 )  - - -  < " | 
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5. A n  a l m o s t  n o w h e r e  F r 6 c h e t  s m o o t h  n o r m  

In this section, we s t rengthen Theorem 3.1 as follows: 

THEOREM 5.1: There exists an equivalent norm p on g2 such that the set of 

points where p is Frdchet differentiable is Aronszajn null. 

The proof is not conceptually difficult but  a bit technical. The  idea how to 

get the points where a convex function is not Fr6chet smooth  is the same as in 

[PZ84]. In order to prove easily tha t  a certain set is Aronszajn null, we intersect 

a sphere by cones instead of intersecting a paraboloid by cylinders as in [PZ84]. 

Proving the non-differentiability then requires more computat ions.  

We begin with some notat ion and preliminaries; see, for example, the book 

[Ph89] for more details. If f is a convex continuous function on g2, we define the 

s u b d i f f e r e n t i a l  o f  f at a point x E ~2 by 

Of(x) = {u E g2: (u,y - x) _< f (y)  - f ( x )  for all y C g2}. 

(The elements of the subdifferential are thought  of as hyperplanes suppor t ing the 

graph of f at (x, f (x)) . )  The o s c i l l a t i o n  of Of at the point x is given by 

osc(0f ,  x) = l i m s u p { [ l u -  vH: ]Ix - Yl] <- t ,u  C Of(x) ,v  E 0f (y )} .  
t--+0 

The fllnction f is Fr6chet differentiable at a point x exactly when osc(0f ,  x) = 0 

(see e.g. [Ph89], p. 19). 

When  we try to construct  many points of non-smoothness,  sums of convex 

functions have the advantage that  none of the functions in the sum can destroy 

the "bad" points of the other functions. 

LEMMA 5.2: Let f and f l , f 2 , f a , . . ,  be convex continuous functions on g2 
o o  such that f = ~i=1 fi. Let Di be the set of points where fi is not Fr~chet 

differentiable. Then f is Fr6chet differentiable at no point of the set ~Ji=l D~. 

This seems to be a folklore result but  we know no explicit reference, so we 

include a short  proof. 

k--1 oo 
Proof: Since f = fk + ~ i = 1  fi + Y~i=k+l fi, it is enough to show the s ta tement  

for f = f l + f 2 .  So suppose tha t  x E D1. If f l  or f2 are not Ggteaux differentiable 

at  x then f l  + f2  is also not Ggteaux differentiable at x either since O(fl +f2 ) (x )  = 

Ofl(x) +Of2(x), and Ggteaux differentiability of convex functions is equivalent to 

single-valuedness of the subdifferential. So suppose both  f l  and f2 are Ggteaux 

differentiable at  x and denote by ui the unique element of Oft(x). Since f1 is not  

Fr6ehet differentiable at x, there is an a > 0 such tha t  for t > 0 arbitrari ly small 
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we have some y E f2 with llx - Yll < t and fl(Y) - f ,  (x) - {ul, y - x} >_ c~l[x - YlI. 

Since f2(y) - f2 (z )  - (u2,y  - x} >_ O, we get fl(Y) + f2(Y) - ( f l ( x )  + k ( x ) )  - 

(Ul q- ?/'2, Y --  X> ~ O~llX --  YlI, and f l  + f2 is not Pr~chet differentiable at x. | 

Let K C 62 be a symmetric ,  closed, convex, and bounded set containing the 

origin in its interior. Let p > 0 be such that  B(O,p) C K .  The M i n k o w s k i  

f u n c t i o n a l  p: 62 --+ R of K is given by 

p(x)  = inf{t > O: x E t K } .  

Such a p defines an equivalent norm on 62. The subdifferential Op(x) is related 

to the suppor t ing  hyperplanes of K as follows (see, e.g., [Ph89], p. 78): 

LEMMA 5.3: Let  p and p > 0 be as above, and let 0 ¢ x E 62. Then v E Op(x) 

holds for a v ~ g2 if and only i f  {v, x) = p(x)  and v supports  K at the point  

x / p ( x ) .  This  means  t h a t  

1 = v, = max{v,y}.  
y c K  

In particular, any v E Op(x) satis/~es Ilvll _< 1/p. 

For a set A C g2, let dcone(A) denote the d o u b l e  c o n e  of A with apex at the 

origin, tha t  is, 

dcone(A) = U tA,  
tER 

and similarly 

cone(A) = U tA.  
t~_o 

Theorem 5.1 is an easy consequence of the results presented in the preceding 

sections and of the following: 

PROPOSITION 5.4: Let  u E g2 be a unit vector and let H be the hyperplane  

u + K e r u  (where K e r u  s tands  for {x E g2: (u ,x}  = 0}). Let  r > 0 and let 2T be 

a fami ly  of  balls in H (relative to H )  of  radius r such that  IJ Y is dense in H.  

Then  there exists  an equivalent norm p on g2 such that  p is Fkdchet differentiable 

at no point  o f  the set D = dcone(H \ [_J .7"). 

Proof: If [.J~- = H the result is obvious (put p = II-II), so we may assume tha t  

there exists a point  a E H \ [J ~ .  Let 

K = 1) \ U 0:). 
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The  set K is closed, convex, bounded,  and symmetr ic .  Since K conta ins  the  

points a/Llall and  -a/llalL and the set B(0,  1) n K e r u ,  there  exists  a p > 0 wi th  

B(0,  p) C K.  Therefore  p, the  Minkowski funct ional  of K ,  defines an equivalent  

norm on t~2. It r emains  to show tha t  p is not  Fr(~chet different iable  at  any po in t  

z E D ,  z¢-O. 
W i t h o u t  loss of genera l i ty  we can suppose  tha t  Ilzll = 1 and (x, u) > 0. Let  us 

set (~ = (z, u). This  is a fixed posi t ive number  (depending  on x only).  We will 

show tha t  

osc(Op, z) _> f3 =/~(,~) 

for a cer ta in  pos i t ive /3  depend ing  on c~ only, and  consequent ly  p is not  Fr~chet 

di f ferent iable  at  z. 

Clear ly  :c E b d r K  and hence p(z) = 1. Since z suppor t s  /3(0, 1) D K a t  

the  po in t  z and  ( z , z )  = 1, we get z c= Op(z). Next,  we want  to  exhib i t  an 

e lement  v of the  subdif ferent ia l  Op(y) at a poin t  y a rb i t r a r i ly  near  to z such t h a t  

f ix  - v i i  _> ~. 
Let  e > 0 be an a rb i t r a r i ly  small  number  (going to 0 while c~ and  any th ing  

depend ing  on c~ only are fixed). Let  rrH: H --+ b d r B ( 0 ,  1) be the  centra l  pro- 

j ec t ion  of the  hype rp l ane  H to the unit  sphere,  given by rrH(W) = w/{[w[[. P u t  

z/-r = r r~ l ( z ) ,  and  choose a ball  Bu E Y at  d i s tance  at  most  cl from ZH, where  

~1 is chosen smal l  enough in te rms of e and (~. Let  a?H be the  poin t  of BH neares t  

to zH,  and  put  2 = rCs(a?H); see F igure  3. Since 7ru is continuous,  el  can be 

chosen in such a way tha t  II:c - 311 _< pc. 

F igure  3. The  s i tua t ion  in Cla im 5.5. 

We need the  following geometr ic  claim: 



22 J. M A T O U S E K  A N D  E. M A T O U S K O V / ~  Isr.  J. Math .  

CLAIM 5.5: There exists a point  z such that the segment ~z = conv{~, z} does 

not  intersect the interior of  K ,  and Ilzl] ~_ 1 - 7, where 7 > 0 depends on c~ and 

r but not  on ~. 

We prove this claim later. Assuming its validity, we first finish the proof of 

Proposition 5.4. Let y be the point on the segment ~z given by y = & + x /~(z-~) .  

Let v lie in the subdifferential Op(y). By Lemma 5.3, we have ]lvl] _< 1/p. The 

same Lemma further gives (v,y) = p(y) _> 1 (because y ¢ in tK) ,  and also 

(v, x} < t since x 6 K. We calculate 

1 1 __ 1)X, Since z = ~ y -  ( ~  

(v ,z )  = ~ ( v , y }  - ( l.~_v/-{ 1)(v,~) _> ~ 1  1 - - ( ~ - 1 ) ( 1 + ~ )  > 1-v/7 .  

Then we have 

I Iv 'x l l  > v - x ,  > ( v - x , z }  k 1-v~- I lx l l ' l l z l l _>  1 - g ~ - ( 1 - @  > g.  

Proposition 5.4 is proved; it remains to prove Claim 5.5. 

Proof  of Claim 5.5: The idea is to show that the portion of the unit ball "bitten 

off" by the cone C = cone(BH) is "sufficiently deep". Namely, we want to choose 

a suitable z in such a way that the hyperplane Z = z + Ker z contains 9 and 

satisfies Z A B(0, 1) C C (Figure 4). 

. \ /::: :! : :  .... < : /  
i!i i!!:!:[!i ! : : : : : : : : : : . : . : . : . . . . . . . . . . .  

i::!::i::::ii::i!i!!:-:;iiFii:.iii::!i!!!::!i!!i!i::iii::iii::::i!ii~;:~:~ ............. BH 

conV(B(0, 1) \ C) 

Figure 4. Illustration to the proof of Claim 5.5. 
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The  si tuat ion is not as simple as a two-dimensional picture might  suggest, 

since C is in general an elliptic cone rather than a circular one. But  if we 

show tha t  C can be wri t ten as a union of circular cones with opening angle 

bounded  from below (i.e. cones of the form cone(B(q, rl)) with IIq]l = 1 and with 

some fixed rl  > 0 depending on r, a)  we are done: we can take a circular cone 

C' = cone(B(q,  r t ) )  C C having 2 on its boundary,  and let Z be the hyperplane 

cut t ing  off exactly the cap of the unit sphere contained in C ' .  

To show tha t  C is a union of suitable circular cones, we first consider the cone 

Co = cone(B(u,  r) Cl H);  see Figure 5. This cone also equals cone(B0), where 

Bo = B(u, r') is a ball of a suitable radius r' = r'(r) (somewhat smaller than  r). 

C 

H 

Figure 5. The affine map F sending Co to C. 

Let CH denote the center of the ball BH in H.  Consider the linear map F :  g2 -+ 

g2 given by 

F ( x )  = x + ( u , x ) ( e H  - u). 

Within  H,  F acts as the t ranslat ion by the vector CH--U, hence BH = F(B(u,  r)N 
H),  and consequently C = F(Co). The ball B0 is mapped  to an ellipsoid E;  for 

our purposes,  it suffices tha t  the intersection of E with any 2-dimensional affine 

subspace containing cu is an ellipse. If aE denotes the supremum and bE the 

infimum of lengths of the semiaxes of these ellipses, then 

1 1 
a E = r ' l l F  H and - ]]F-1]]. 

b~ r '  

Since bo th  the norms IIFI] and IIF-11] are bounded by functions of [[CHII, both  

I/bE and aE can also be bounded by functions of I]cn[I and r. 
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It remains to show that E can be expressed as a union of balls of a fixed 

radius r2 :> 0 (depending on aE and bE). In fact, we only need to show that  

the points on the boundary of E are contained in such balls. Let x E bdr E, 

and let Bx be a ball of some radius r2 containing x at its boundary and having 

the same tangent hyperplane at x as E does (and lying on the same side of 

this hyperplane as E). If Bx is not completely contained in E then there is a 

2-dimensional plane ~- containing x and the center of E such that B~ N ~- is not 

contained in E M T. Since B~ M T is a circular disc of radius at most r2 and E N m is 

an ellipse with semiaxes lengths lying in the interval [bE, aE], it suffices to check 

the following statement in the plane: If E is an ellipse with semiaxes lying in an 

interval [b, a], 0 < b < a, then there exists a radius r2 = r2(a, b) such that for any 

point x E bdr E, the circle of radius r2 touching E at x from inside is completely 

contained in E. This can be checked by elementary arguments. In fact, the value 

r2 is the reciprocal the maximal curvature of an ellipse with semiaxes a and b, 

and we can set r2 = b2/a. I 

Proof of Theorem 5.1: We fix a unit vector u E g2 and set H -- u + Keru. By 

Proposition 3.2 there exists, for each m E N, a family ~-m of congruent balls in H 

(relative to H) such that UhFm is dense in H and )~u (UNU~,  0 ~_ 1Ira for each 

test cube U in H. By Proposition 5.4, there exists an equivalent norm Pm on 

g2 which is Fr~chet differentiable at no point of the set dcone(H \ US-m). Put 

p = ~ a m p m ,  where am are sufficiently small positive numbers (if Pm ~- emil.l[ 
then put am = 1/2mcm, say). Then p is an equivalent norm on g2 which can be 

Fr~chet differentiable only at points of nm~=l dcone(U -Pm), by Lemma 5.2. 

Let x C g2 and let X be a 12-dimensional subspace of Keru. Write x = tu+xo,  

with t E l~ and xo E Ker u. If t ~ O, we have 

(x + X) N n dc°ne ( U 5 ~ " 0  = t(s+ ~-xo +X)  n dcone ( U - P m )  
m=l  m----1 

=t (u+Txo+X)n 
r a =  l 

Similarly as in the proof of Theorem 3.1, we see that the 12-dimensional mea- 

sure of the set in the parentheses is zero for each t ~ 0. Since the hyperplane 

Keru (corresponding to t = 0) is Aronszajn null, the set N~=I  dc°ne(U-Pm) is 

Aronszajn null by Lemma 2.2. This proves Theorem 5.1. I 
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A s i m p l e  p r o o f  o f  P r o p o s i t i o n  3.2 a c c o r d i n g  t o  D a v i d  P r e i s s  

Here it is convenient  to take 5-dimensional test  cubes. So by a test  cube, we mean  

any congruent  copy U of the  5-dimensional unit  cube [0, 1] 5 in g2. We denote  

the  5-dimensional  Lebesgue measure  on U by Au. In the proof  we will again  use 

the K - t i m e s  enlarged test  cubes congruent  to To = [0, K]5; for an o r thonormal  

family u = ( u l , . . - , u 5 )  in g2 and x E g2, we put  

T = T ( x , u ) =  x +  a i u i : O < _ a i < _ K , i = l , . . . , 5  . 
i=1 

Let # =/AT be the uniform probabi l i ty  measure  on T obta ined  by re-scaling the  

5-dimensional  Lebesgue measure.  

Ins tead  of Cla im 4.6 we use the following. 

CLAIM 4.6~: Let Z be a 5-dimensional subspace of  g2 and let x E g2 be so that 

d i s t ( x , Z )  >_ 1 -  p for some O < p < 1. Then B(x,  1) O Z is contained in a 5- 

dimensional ball of radius at most 2v/-fi, whose 5-dimensional Lebesgue measure  

is thus at most/3p 5/2, where ~ is an absolute constant. 

For the reader ' s  convenience, we recall the s t a t ement  being proved. 

PROPOSITION 3.2: Let ~ > 0 be given. There  exist a number r > 0 and a 

countable set  C C g2 such that 

(A) for any  5 > 0, B ( C , r  + 5) = g2, and 

(B) Au(U A B(C,  r)) <_ ~ for any test cube U. 

Proof: Let (en) be  the o r thonormal  basis of g2. For x E ga we define the suppor t  

of x as spt  x = {i ¢ N: (x, ei) ~ 0}. Let (xk)~_l be a dense sequence in t~2 with 

each xk finitely suppor ted .  Choose nl  < n2 < --- such t ha t  m a x s p t ( x k )  < nk. 

Def ineck  = z k + e n k  and C =  {ck :k  E N}. Let  e > 0 b e g i v e n .  We will show 

tha t  for K > 0 large enough 

(A')  for any 5 > 0, B(C, 1 + 5) = ga, and 

(B')  #T (T  A B(C, 1)) < 6 for any congruent  copy T of To. 

Once we prove this, the Propos i t ion  is obta ined  by pu t t ing  r = 1 / K  and replacing 

C by (1 /K)C ' .  

T h e  condit ion (A I) is satisfied since xk ¢ B(ck, 1) for all k. 

To verify condit ion (B') ,  let T = T(x,  u) be a congruent  copy of the cube To. 

P u t  DT = B(x ,  R) N aft(T) ,  where R = 10K, and for j = 0, 1 , . . .  let 

I j  = {k E N: 1 - 2 - j  _< dist(DT,Ck) < 1 -- 2 - J - 1 } .  
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ghrther, let wk E DT denote a point attaining the distance of DT to Ck, i.e. with 

Ilwk -ckl l  = dist(DT,ck). If dist(ck,T) < 1, then k E I j  for some j ,  and we have 

#(T  N B(Ck, 1)) _</?2-5j/2/KD by Claim 4.6'. Hence 

(6) #(B(C, 1) n T) < ~-g E 2-5J/21Ijl. 
j=0 

To estimate I_r~l, we first observe that for all but few k's in Ij, e,~ k is near- 

orthogonal to spanu.  Namely, set 77 = 1/5R.  2 j+2 and define 

I~ = {k e Ij: I(ui,e,~k)l < r I for a l l / =  1 ,2 , . . . , 5} .  

Since each ui is a unit vector, we have 

[{k e N: f(u~,enk}l _> '}l  < ~-2, 

and hence ]Ij \ I3] </?1K222j,/71 a constant. 

Next, we bound ]I}[. We have 

Ilwk - ckll _> I(wk, end) - (ck, en~)l = I(wk, end) - iI, 

and since Ilwk - c k l l  < 1 - 2  - j - l ,  we derive {wk,enk) > 2 - j -1 .  Writing 
5 wk = x + ~i=1 aiui, where ]ai] _< R, we get 

(z, e~ )  _> (wk, ~ )  - 5 R v  _> 2 - j -2 .  

On the other hand, for all k e I~ we have IIx[nk + 1..-]11 - IIx - ckll < 2R, and 

so i fp  is the first index with IIz[p + 1...]11 < 2R, we find 

4R2>l l [x [p+l . . . ] l12_> ~ '  (z, en~)2 >_ ( l I~l-1) .  2 -2j-4. 
kEI~ ,nk >p 

Estimating II}l from this inequality and combining with the bound for IIj \ I}l 
derived above, we get that IIjl < /7222JK 2, where/?2 is a constant. Finally, by 

substituting into (6), we arrive at 

OO 

#(B(C, 1) A T)  < i--gs/?2K2 E 2 - }  _</?3K. 
j=0 

This is at most e for K large enough. | 
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